Spatial light modulator

Spatial light modulator

A spatial light modulator (SLM) is an object that imposes some form of spatially-varying modulation on a beam of light. A simple example is an overhead projector transparency. Usually when the phrase SLM is used, it means that the transparency can be controlled by a computer. In the 1980s large SLMs were placed on overhead projectors to project computer monitor contents to the screen. Since then more modern projectors have been developed where the SLM is built inside the projector. These are commonly used in meetings of all kinds for presentations.

Usually, an SLM modulates the intensity of the light beam, however it is also possible to produce devices that modulate the phase of the beam or both the intensity and the phase simultaneously.

SLMs are used extensively in holographic data storage setups to encode information into a laser beam in exactly the same way as a transparency does for an overhead projector. They can also be used as part of a holographic display technology.

SLMs have been used as a component in optical computing.

Electrically addressed Spatial Light Modulator (EASLM)

As its name implies, the image on an electrically addressed spatial light modulator is created and changed electronically, as in most electronic displays. EASLMs usually receive input via a conventional interface such as VGA or DVI input. They are commonly available at resolutions up to WUXGA (1920 × 1200). Unlike ordinary displays, they are usually much smaller (having an active area of about 2 cm²) as they are not normally meant to be viewed directly. An example of an EASLM is the Digital Micromirror Device at the heart of DLP displays or Electrically controlled birefringent LCoS Displays.

Optically addressed Spatial Light Modulator (OASLM)

The image on an optically addressed spatial light modulator, also known as a light valve, is created and changed by shining light encoded with an image on its front or back surface. A photosensor allows the OASLM to sense the brightness of each pixel and replicate the image using liquid crystals. As long as the OASLM is powered, the image is retained even after the light is extinguished. An electrical signal is used to clear the whole OASLM at once.

They are often used as the second stage of a very-high-resolution display, such as one for a computer-generated holographic display. In a process called active tiling, images displayed on an EASLM are sequentially transferred to different parts an OASLM, before the whole image on the OASLM is presented to the viewer. As EASLMs can run as fast as 2500 frames per second, it is possible to tile around 100 copies of the image on the EASLM onto an OASLM while still displaying full-motion video on the OASLM. This potentially gives images with resolutions of above 100 megapixels.

Application in ultrafast pulse measuring and shaping

Multiphoton Intrapulse Interference Phase Scan (MIIPS) is a technique based on the computer-controlled phase scan of spatial light modulator. Through the phase scan to an ultrashort pulse, MIIPS can not only characterize but also manipulate the ultrashort pulse to get the needed pulse shape at target spot (such as Transform-Limited pulse for optimized peak power, and other specific pulse shapes). This technique features with full calibration and control of the ultrashort pulse, with no moving parts, and simple optical setup.

See also Active filters in Femtosecond pulse shaping.

References

*"Digital Light Processing for High-Brightness, High-Resolution Applications", Larry J. Hornbeck (TI), 21st century Archives [http://www.vxm.com/TIDLP.html]
*"Optically addressed spatial light modulators for replaying computer-generated holograms", Coomber, Stuart D.; Cameron, Colin D.; Hughes, Jonathon R.; Sheerin, David T.; Slinger, Christopher W.; Smith, Mark A.; Stanley, Maurice (QinetiQ), Proc. SPIE Vol. 4457, p. 9-19 (2001)
*"Liquid Crystal Optically Addressed Spatial Light Modulator", [http://www-optique.enst-bretagne.fr/18_LCOASLM.htm]
*"Computer-Generated Holography as a Generic Display Technology", Slinger, C.; Cameron, C.; Stanley, M.; IEEE Computer, Volume 38, Issue 8, Aug. 2005, pp 46-53, [http://www.macs.hw.ac.uk/modules/F24VS2/Resources/Holography.pdf]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Spatial Light Modulator — Pour les articles homonymes, voir SLM. Un Spatial Light Modulator (SLM, qui peut être traduit par Modulateur de lumière dans l espace), est un dispositif qui permet de modifier les composantes (intensité, phase, polarisation) d un rayon de… …   Wikipédia en Français

  • Spatial Light Modulator — Ein räumlicher Modulator für Licht (englisch: Spatial Light Modulator (SLM)) ist ein Gerät, um Licht eine räumliche Modulation aufzuprägen. Ein einfaches Beispiel ist die Transparenz eines Tageslichtprojektors. In den 80er Jahren wurden große… …   Deutsch Wikipedia

  • Modulator (Optik) — Ein Modulator ist ein optisches Bauteil, um Licht eine definierte Charakteristik aufzuprägen. Dies kann beispielsweise eine zeitliche oder räumliche Amplituden oder Phasenvariation sein. Inhaltsverzeichnis 1 Anwendungsbeispiele 2 Modulatortypen 2 …   Deutsch Wikipedia

  • Digital Light Processing — Mikrospiegelarray (DLP Chip) von Texas Instruments im Gehäuse Rückseite des Gehäuses mit Anschlusskontakten …   Deutsch Wikipedia

  • Optical modulator — An optical modulator is a device which is used to modulate a beam of light. The beam may be carried over free space, or propagated through an optical waveguide. Depending on the parameter of a light beam which is manipulated, modulators may be… …   Wikipedia

  • Optical modulators using semiconductor nano-structures — Contents 1 Optical modulators using semiconductor nano structures 1.1 Electro optic modulator of nano structures 1.2 Acousto optic modulator of nano structures …   Wikipedia

  • Optical vortex — An optical vortex (also known as a screw dislocation or phase singularity) is a zero of an optical field, a point of zero intensity. Research into the properties of vortices has thrived since a comprehensive paper by Nye and Berry, in 1974,[1]… …   Wikipedia

  • Optical tweezers — (originally called single beam gradient force trap ) are scientific instruments that use a highly focused laser beam to provide an attractive or repulsive force (typically on the order of piconewtons), depending on the refractive index mismatch… …   Wikipedia

  • Multiphoton intrapulse interference phase scan — (MIIPS) is a method used in ultrashort laser technology that simultaneously measures (phase characterization), and compensates (phase correction) femtosecond laser pulses using an adaptive pulse shaper. Current ultrashort laser pulse… …   Wikipedia

  • Ultrashort pulse — In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is on the order of the femtosecond (10 − 15 second). Such pulses have a broadband optical spectrum, and can be created by mode locked oscillators. They are… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”