Elliptic geometry — (sometimes known as Riemannian geometry) is a non Euclidean geometry, in which, given a line L and a point p outside L, there exists no line parallel to L passing through p.Elliptic geometry, like hyperbolic geometry, violates Euclid s parallel… … Wikipedia
Elliptic functions — Function Func tion, n. [L. functio, fr. fungi to perform, execute, akin to Skr. bhuj to enjoy, have the use of: cf. F. fonction. Cf. {Defunct}.] 1. The act of executing or performing any duty, office, or calling; performance. In the function of… … The Collaborative International Dictionary of English
Dirichlet's unit theorem — In mathematics, Dirichlet s unit theorem is a basic result in algebraic number theory due to Gustav Lejeune Dirichlet.[1] It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a… … Wikipedia
Cyclotomic unit — In mathematics, a cyclotomic unit is a unit of an algebraic number field of the form (ζn − 1)/(ζ − 1) for ζ a root of unity, or more generally a unit that can be written as a product of these and a root of unity. The… … Wikipedia
Weierstrass's elliptic functions — In mathematics, Weierstrass s elliptic functions are elliptic functions that take a particularly simple form; they are named for Karl Weierstrass. This class of functions are also referred to as p functions and generally written using the symbol… … Wikipedia
List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity. Computer scientist Manindra Agrawal of the… … Universalium
Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − … Wikipedia