Schur's lemma

Schur's lemma

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that that if "M" and "N" are two finite-dimensional irreducible representations of a group "G" and "φ" is linear map from "M" to "N" that commutes with the action of the group, then either "φ" is invertible, or "φ" = 0. An important special case occurs when "M" = "N" and "φ" is a self-map. The lemma is named after Issai Schur who used it to prove Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.

Formulation in the language of modules

If "M" and "N" are two simple modules over a ring "R", then any homomorphism "f": "M" → "N" of "R"-modules is either invertible or zero. In particular, the endomorphism ring of a simple module is a division ring.

The condition that "f" is a module homomorphism means that

: f(rm) = rf(m) for all m in M and r in R.

The group version is a special case of the module version, since any representation of a group "G" can equivalently be viewed as a module over the group ring of "G".

Schur's lemma is frequently applied in the following particular case. Suppose that "R" is an algebra over the field C of complex numbers and "M" = "N" is a finite-dimensional module over "R". Then Schur's lemma says that any endomorphism of the module "M" is either given by a multiplication by a non-zero scalar, or is identically zero. This can be expressed by saying that the endomorphism ring of the module "M" is C, that is, "as small as possible". More generally, this results holds for algebras over any algebraically closed field and for simple modules that are at most countably-dimensional. When the field is not algebraically closed, the case where the endomorphism ring is as small as possible is of particular interest: A simple module over "k"-algebra is said to be absolutely simple if its endomorphism ring is isomorphic to "k". This is in general stronger than being irreducible over the field "k", and implies the module is irreducible even over the algebraic closure of "k".

Matrix form

Let "G" be a complex matrix group. This means that "G" is a set of square matrices of a given order "n" with complex entries and "G" is closed under matrix multiplication and inversion. Further, suppose that "G" is "irreducible": there is no subspace "V" other than 0 and the whole space which is invariant under the action of "G". In other words,

: if gVsubseteq V for all g in G, then either V=0 or V=mathbb{C}^n.

Schur's lemma, in the special case of a single representation, says the following. If "A" is a complex matrix of order "n" that commutes with all matrices from "G" then "A" is a scalar matrix.

Generalization to non-simple modules

The one module version of Schur's lemma admits generalizations involving modules "M" that are not necessarily simple. They express relations between the module-theoretic properties of "M" and the properties of the endomorphism ring of "M".

A module is said to be strongly indecomposable if its endomorphism ring is a local ring. For the important class of modules of finite length, the following properties are equivalent harv|Lam|2001|loc=§19:
* A module "M" is indecomposable;
* "M" is strongly indecomposable;
* Every endomorphism of "M" is either nilpotent or invertible.

In general, Schur's lemma cannot be reversed: there exist modules that are not simple, yet their endomorphism algebra is a division ring. Such modules are necessarily indecomposable, and so cannot exist over semi-simple rings such as the complex group ring of a finite group. However, even over the ring of integers, the module of rational numbers has an endomorphism ring that is a division ring, specifically the field of rational numbers. Even for group rings, there are examples when the characteristic of the field divides the order of the group: the Jacobson radical of the projective cover of the one-dimensional representation of the alternating group on five points over the field with three elements has the field with three elements as its endomorphism ring.

References

*David S. Dummit, Richard M. Foote. "Abstract Algebra." 2nd ed., pg. 337.
*Citation | last1=Lam | first1=Tsit-Yuen | title=A First Course in Noncommutative Rings | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-0-387-95325-0 | year=2001


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • SCHUR, ISSAI — (Isaiah; 1875–1941), mathematician. Schur was born in Mogilev, Ukraine. In 1920 he became professor of mathematics at the University of Berlin. He specialized in the theory of numbers, particularly with regard to finite groups and their… …   Encyclopedia of Judaism

  • Schur complement — In linear algebra and the theory of matrices,the Schur complement of a block of a matrix within alarger matrix is defined as follows.Suppose A , B , C , D are respectively p times; p , p times; q , q times; p and q times; q matrices, and D is… …   Wikipedia

  • Lemma von Schur — Das Lemma von Schur, benannt nach Issai Schur, beschreibt die Homomorphismen zwischen einfachen Moduln. Es besagt, dass jeder solche Homomorphismus außer dem Nullhomomorphismus ein Isomorphismus ist. Das Lemma von Schur in der modultheoretischen… …   Deutsch Wikipedia

  • Schur-Faktorisierung — In der Linearen Algebra, einem Teilgebiet der Mathematik, ist die Schur Zerlegung (oder auch Schursche Normalform genannt) eine wichtige Matrix Zerlegung, genauer ein Trigonalisierungsverfahren. Sie ist benannt nach dem Mathematiker Issai Schur.… …   Deutsch Wikipedia

  • Schur-Normalform — In der Linearen Algebra, einem Teilgebiet der Mathematik, ist die Schur Zerlegung (oder auch Schursche Normalform genannt) eine wichtige Matrix Zerlegung, genauer ein Trigonalisierungsverfahren. Sie ist benannt nach dem Mathematiker Issai Schur.… …   Deutsch Wikipedia

  • Schur-Zerlegung — In der Linearen Algebra, einem Teilgebiet der Mathematik, ist die Schur Zerlegung (oder auch Schursche Normalform genannt) eine wichtige Matrix Zerlegung, genauer ein Trigonalisierungsverfahren. Sie ist benannt nach dem Mathematiker Issai Schur.… …   Deutsch Wikipedia

  • Issai Schur — (January 10, 1875 in Mogilyov ndash; January 10, 1941 in Tel Aviv) was a mathematician who worked in Germany for most of his life. He studied at Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at Bonn,… …   Wikipedia

  • Frobenius-Schur indicator — In mathematics the Schur indicator, named after Issai Schur, or Frobenius Schur indicator describes what invariant bilinear forms a given irreducible representation of a compact group on a complex vector space has, and can be used to classify the …   Wikipedia

  • Schursches Lemma — Das Lemma von Schur, benannt nach Issai Schur, beschreibt die Homomorphismen zwischen irreduziblen Moduln. Es besagt, dass jeder solche Homomorphismus außer dem Nullhomomorphismus ein Isomorphismus ist. Das Lemma von Schur in der… …   Deutsch Wikipedia

  • Issai Schur — Issai Schur[1] (* 10. Januar 1875 in Mogiljow; † 10. Januar 1941 in Tel Aviv) war ein Mathematiker, der die meiste Zeit seines Lebens in Deutschland arbeitete. Als Student von Frobenius arbeitete er über Darstellungstheorie von Gruppen, aber auch …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”