Schur complement

Schur complement

In linear algebra and the theory of matrices,the Schur complement of a block of a matrix within alarger matrix is defined as follows.Suppose "A", "B", "C", "D" are respectively"p"×"p", "p"×"q", "q"×"p"and "q"×"q" matrices, and "D" is invertible.Let

:M=left [egin{matrix} A & B \ C & D end{matrix} ight]

so that "M" is a ("p"+"q")×("p"+"q") matrix.

Then the Schur complement of the block "D" of thematrix "M" is the "p"×"p" matrix

:A-BD^{-1}C.

It is named after Issai Schur who used it to prove Schur's lemma, although it had been used previously [citebook |title=The Schur Complement and Its Applications |first=Fuzhen |last=Zhang |year= |publisher=Springer |year=2005|isbn=0387242716 ] .

Background

The Schur complement arises as the result of performing a block Gaussian elimination by multiplying the matrix "M" from the right with the "lower triangular" block matrix

:L=left [egin{matrix} I_p & 0 \ -D^{-1}C & D^{-1} end{matrix} ight] .

Here "Ip" denotes a "p"×"p" unit matrix. After multiplication with the matrix "L" the Schur complement appears in the upper "p"×"p" block. The product matrix is

:Mcdot L= left [egin{matrix} A & B \ C & D end{matrix} ight] left [egin{matrix} I_p & 0 \ -D^{-1}C & D^{-1} end{matrix} ight] = left [egin{matrix} A-BD^{-1}C & BD^{-1} \ 0 & I_q end{matrix} ight] .

The inverse of "M" thus may be expressed involving D^{-1} and the inverse of Schur's complement (if it exists) only as

: left [ egin{matrix} A & B \ C & D end{matrix} ight] ^{-1} =left [ egin{matrix} I & 0 \ -D^{-1}C & I end{matrix} ight] left [ egin{matrix} (A-BD^{-1}C)^{-1} & 0 \ 0 & D^{-1} end{matrix} ight] left [ egin{matrix} I & -BD^{-1} \ 0 & I end{matrix} ight] ::::= left [ egin{matrix} left(A-B D^{-1} C ight)^{-1} & -left(A-B D^{-1} C ight)^{-1} B D^{-1} \ -D^{-1}Cleft(A-B D^{-1} C ight)^{-1} & D^{-1}+ D^{-1} C left(A-B D^{-1} C ight)^{-1} B D^{-1} end{matrix} ight] .

If "M" is a positive-definite symmetric matrix, then so is the Schur complement of "D" in "M".

If "p" and "q" are both 1 (i.e. "A", "B", "C" and "D" are all scalars), we get the familiar formula for the inverse of a 2 by 2 matrix:

: M^{-1} = frac{1}{AD-BC} left [ egin{matrix} D & -B \ -C & A end{matrix} ight]

provided that the determinant AD-BC is non-zero.

Application to solving linear equations

The Schur complement arises naturally in solving a system of linear equations such as

:Ax + By = a:Cx + Dy = b

where "x", "a" are "p"-dimensional column vectors, "y", "b" are "q"-dimensional column vectors, and "A", "B", "C", "D" are as above. Multiplying the bottom equation by BD^{-1} and then subtracting from the top equation one obtains

:(A - BD^{-1} C) x = a - BD^{-1} b.,

Thus if one can invert "D" as well as the Schur complement of "D", one can solve for "x", and then by using the equation Cx + Dy = b one can solve for "y". This reduces the problem ofinverting a (p+q) imes (p+q) matrix to that of inverting a "p"×"p" matrix and a "q"×"q" matrix. In practice one needs "D" to be well-conditioned in order for this algorithm to be numerically accurate.

Applications to probability theory and statistics

Suppose the random column vectors "X", "Y" live in R"n" and R"m" respectively, and the vector ("X", "Y") in R"n"+"m" has a multivariate normal distribution whose variance is the symmetric positive-definite matrix

:V=left [egin{matrix} A & B \ B^T & C end{matrix} ight] .

Then the conditional variance of "X" given "Y" is the Schur complement of "C" in "V":

:operatorname{var}(Xmid Y) = A-BC^{-1}B^T.

If we take the matrix "V" above to be, not a variance of a random vector, but a "sample" variance, then it may have a Wishart distribution. In that case, the Schur complement of "C" in "V" also has a Wishart distribution.

References

See also

* Woodbury matrix identity


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Schur complement method — The Schur complement method is the basic and the earliest version of non overlapping domain decomposition method, also called iterative substructuring. A finite element problem is split into non overlapping subdomains, and the unknowns in the… …   Wikipedia

  • Complement (mathematics) — Complement has a variety of uses in mathematics:* complement, an operation that transforms an integer into its additive inverse, useful for subtracting numbers when only addition is possible, or is easier * complement, a system for working with… …   Wikipedia

  • Complément de Schur —  Ne doit pas être confondu avec la méthode du complément de Schur (en) en analyse numérique. En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit …   Wikipédia en Français

  • Schur — Issai Schur Issai Schur, né à Moguilev le 10 janvier 1875 et mort à Tel Aviv le 10 janvier 1941, est un mathématicien russe qui a surtout travaillé en Allemagne. Il a étudié à Berlin sous Frobenius, a obtenu son doctorat en 1901 et est devenu… …   Wikipédia en Français

  • Complement — In many different fields, the complement of X is something that together with X makes a complete whole something that supplies what X lacks. Complement may refer to: Complement (linguistics), a word or phrase having a particular syntactic role… …   Wikipedia

  • Complement de Schur — Complément de Schur En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p …   Wikipédia en Français

  • Complément De Schur — En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p and q×q,… …   Wikipédia en Français

  • Complément de schur — En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p and q×q,… …   Wikipédia en Français

  • Schur decomposition — In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation (named after Issai Schur) is an important matrix decomposition. Statement The Schur decomposition reads as follows: if A is a n times; n square… …   Wikipedia

  • Complément d'un sous-groupe — Sommaire 1 Définition 2 Exemples et contre exemples 3 Notes et références 4 Articles connexes Définition …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”