- Atmospheric thermodynamics
In the
physical science s, atmospheric thermodynamics is the study ofheat andenergy transformations in the earth’s atmospheric system. Following the fundamental laws ofclassical thermodynamics , atmospheric thermodynamics studies such phenomena as properties of moist air, formation of clouds, atmospheric convection, boundary layer meteorology, and vertical stabilities in the atmosphere. Atmosphericthermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations in numerical weather models, and is used in many climate considerations, including convective-equilibrium climate models.Overview
Atmospheric thermodynamics focuses on water and its transformations. Areas of study include the law of energy conservation, the
ideal gas law , specific heat capacities, adiabatic processes (in whichentropy is conserved), and moist adiabatic processes. Most of tropospheric gases are treated as ideal gases andwater vapor is considered as one of the most important trace components of air.Advanced topics are
phase transitions of water, homogeneous and inhomogeneous nucleation, effect of dissolved substances on cloud condensation, role of supersaturation on formation of ice crystals and cloud droplets. Considerations of moist air and cloud theories typically involve various temperatures, such as equivalent potential temperature, wet-bulb and virtual temperatures. Connected areas are energy, momentum, andmass transfer , turbulence interaction between air particles in clouds, convection, dynamics of tropical cyclones, and large scale dynamics of the atmosphere.The major role of atmospheric thermodynamics is expressed in terms of adiabatic and diabatic forces acting on
air parcel s included inprimitive equations of air motion either as grid resolved or subgrid parameterizations. These equations form a basis for the numerical weather and climate predictions.History
In the early 1800s thermodynamicists such as Sadi Carnot,
Rudolf Clausius , andEmile Clapeyron developed mathematical models on the dynamics of bodies fluids and vapors related to the combustion and pressure cycles of atmospheric steam engines; one example is theClausius-Clapeyron equation . In 1873, thermodynamicistWillard Gibbs published "Graphical Methods in the Thermodynamics of Fluids."These sorts of foundations naturally began to be applied towards the development of theoretical models of atmospheric thermodynamics which drew the attention of the best minds. Papers on atmospheric thermodynamics appeared in the 1860s that treated such topics as dry and moist adiabatic processes. In 1884 Heinrich Hertz devised first atmospheric thermodynamic diagram (
emagram ) [ Hertz, H., 1884, Graphische Methode zur Bestimmung der adiabatischen Zustandsanderungen feuchter Luft. Meteor Ztschr, vol. 1, pp. 421-431. English translation by Abbe, C. - The mechanics of the earth's atmsphere. Smithsonian Miscellaneous Collections, 843, 1893, 198-211 ] . Pseudo-adiabatic process was coined by von Bezold describing air as it is lifted, expands, cools, and eventually precipitates its water vapor; in 1888 he published voluminous work entitled "On the thermodynamics of the atmosphere" [ Zur Thermodynamik der Atmosphäre. Pts. I, II. Sitz. K. Preuss. Akad. Wissensch. Berlin, pp. 485-522, 1189-1206; Gesammelte Abhandlugen, pp. 91-144. English translation Abbe, C. The mechanics of the earth's atmosphere. Smithsonian Miscellaneous Collections, no 843, 1893, 212-242. ] . In 1911 vonAlfred Wegener published a book "Thermodynamik der Atmosphäre", Leipzig, J. A. Barth.From here the development of atmospheric thermodynamics as a branch of science began to take root. The term "atmospheric thermodynamics", itself, can be traced toFrank W. Very s 1919 publication: “The radiant properties of the earth from the standpoint of atmospheric thermodynamics” (Occasional scientific papers of the Westwood Astrophysical Observatory). By the late 1970s various textbooks on the subject began to appear. Today, atmospheric thermodynamics is an integral part of weather forecasting.Chronology
*1751 Charles Le Roy recognized dew point temperature as point of saturation of air
*1782Jacques Charles made hydrogen balloon flight measuring temperature and pressure in Paris
*1784 Concept of variation of temperature with height was suggested
*1801-1803John Dalton developed his laws of pressures of vapours
*1804Joseph Louis Gay-Lussac made balloon ascent to study weather
*1805 Pierre Simon Laplace developed his law of pressure variation with height
*1841 James Pollard Espy publishes paper on convection theory of cyclone energy
*1889 Herman von Helmholtz and John William von Bezold used the concept of potential temperature, von Bezold used adiabatic lapse rate and pseudoadiabat
*1893 Richard Asman constructs first aerological sonde (pressure-temperature-humidity)
*1894 John Wilhelm von Bezold used concept of equivalent temperature
*1926 Sir Napier Shaw introduced tephigram
*1933 Tor Bergeron published paper on "Physics of Clouds and Precipitation" describing precipitation from supercooled (due to condensational growth of ice crystals in presence of water drops)
*1946 Vincent J. Schaeffer and Irving Langmuir performed the first cloud-seeding experiment
*1986 K. Emanuel conceptualizes tropical cyclone as Carnot heat engineApplications
Tropical cyclone Carnot cycle
The thermodynamic structure of the hurricane can be modelled as a heat engine [ Emanuel, K. A. Annual Review of Fluid Mechanics, 23, 179-196 (1991) ] running between sea temperature of about 300K and tropopause which has temperature of about 200K. Parcels of air traveling close to the surface take up moisture and warm, ascending air expands and cools releasing moisture (rain) during the condensation. The release of latent heat energy during the condensation provides mechanical energy for the hurricane. Both a decreasing temperature in the upper troposphere or an increasing temperature of the atmosphere close to the surface will increase the maximum winds observed in hurricanes. When applied to hurricane dynamics it defines a Carnot heat engine cycle and predicts maximum hurricane intensity.
The Clausius-Clapeyron and global climate change
The Clausius Clapeyron equation governs the water-holding capacity of the atmosphere, which increases by about 8% per degree Celsius increase in temperature. Saturation water vapor pressure is given by:where is in hPa, and is in Celsius. Neglecting weak dependence of the denominator on temperature one notices that saturation water vapor pressure changes approximately exponentially with T. Therefore, when temperature increases in the atmosphere due to greenhouse gases the
absolute humidity should go up, assuming a constantrelative humidity . However, this purely thermodynamic argument is subject of considerable debate because convective processes might cause extensive drying due to increased areas of subsidence, efficiency of precipitation could be influenced by the intensity of convection, and because cloud formation is related to relative humidity.Fact|date=September 2008See also
*
Biological thermodynamics
*Black hole thermodynamics
*Chemical thermodynamics
*Classical thermodynamics
*Cloud physics
*Equilibrium thermodynamics
*Fluid dynamics
*Non-equilibrium thermodynamics
*Phenomenological thermodynamics
*Statistical thermodynamics
*Thermodynamics pecial topics
*Lorenz, E. N., 1955, Available potential energy and the maintenance of the general circulation, Tellus, 7, 157-167.
*Emanuel, K, 1986, Part I. An air-sea interaction theory for tropical cyclones, J. Atmos. Sci. 43, 585, (energy cycle of the mature hurricane has been idealized here as Carnot engine that converts heat energy extracted from the ocean to mechanical energy).References
#cite book | author=Bohren, Craig, F. | title=Atmospheric Thermodynamics | publisher=Oxford University Press | year=1998 | id=ISBN 0-19-509904-4
#Curry, J.A. and P.J. Webster, 1999, Thermodynamics of Atmospheres and Oceans. Academic Press, London, 467 pp (textbook for graduates)
#Dufour, L. et, Van Mieghem, J. - Thermodynamique de l'Atmosphère, Institut Royal Meteorologique de Belgique, 1975. 278 pp (theoretical approach). First edition of this book - 1947.
#Emanuel, K.A.(1994): Atmospheric Convection, "Oxford University Press". ISBN 0-19-506630-8 (thermodynamics of tropical cyclones).
#Iribarne, J.V. and Godson, W.L., Atmospheric thermodynamics, Dordrecht, Boston, Reidel (basic textbook).
#cite book | author=Tsonis, Anastoasios, A.; | title=An Introduction to Atmospheric Thermodynamics | publisher=Cambridge University Press | year=2002 | id=ISBN 0-521-79676-8
#von Alfred Wegener, Thermodynamik der Atmosphare, Leipzig, J. A. Barth, 1911, 331pp.
#Wilford Zdunkowski, Thermodynamics of the atmosphere: a course in theoretical meteorology, Cambridge, Cambridge University Press, 2004.External links
* [http://www.auf.asn.au/meteorology/section1a.html Atmospheric Thermodynamics] (part 1)
* [http://www.auf.asn.au/meteorology/section1b.html Atmospheric Thermodynamics] (part 2)
Wikimedia Foundation. 2010.