Norm of an ideal

Norm of an ideal

The norm of an ideal is defined in algebraic number theory. Let Ksubset L be two number fields with rings of integers O_Ksubset O_L. Suppose that the extension L/K is a Galois extension with

:G= extstyle{Gal}(L/K).

The norm of an ideal I of O_L is defined as follows

:N_K^L(I)=O_K capprod_{sigma in G}^{} sigma (I)

which is an ideal of O_K. The norm of a principal ideal generated by "α" is the ideal generated by the field norm of "α".

The norm map is defined from the set of ideals of O_L. to the set of ideals of O_K. It is reasonable to use integers as the range for the norm map

:N_mathbb{Q}^L(I)

since Z is a principal ideal domain. This idea doesn't work in general since class group is usually non-trivial.

Alternate Formulation

Let L be a number field with ring of integers O_L, and alpha a nonzero ideal of O_L. Then the norm of alpha is defined to be :N(alpha) =left [ O_L: alpha ight ] =|O_L/alpha|.By convention, the norm of the zero ideal is taken to be zero.

If alpha is a principal ideal with alpha=(a), then N(alpha)=|N(a)|.

The norm is also completely multiplicative in that if alpha and eta are ideals of O_L, then N(alpha*eta)=N(alpha)N(eta).

The norm of an ideal alpha can be used to bound the norm of some nonzero element xin alpha by the inequality:|N(x)|leq left ( frac{2}{pi} ight ) ^ {r_2} sqrtN(alpha)where Delta_L is the discriminant of L and r_2 is the number of pairs of complex embeddings of L into mathbb{C}.

ee also

*Dedekind zeta function

References

* Daniel A. Marcus, "Number Fields", third edition, Springer-Verlag, 1977


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Norm — or NORM may refer to: Contents 1 In academia 1.1 In mathematics 2 People 3 Miscellaneous 4 …   Wikipedia

  • Ideal norm — In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an… …   Wikipedia

  • Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… …   Wikipedia

  • Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… …   Wikipedia

  • Norm — (von lateinisch norma ursprünglich ‚Winkelmaß‘, dann aber auch ‚Richtschnur‘, ‚Maßstab‘, ‚Regel‘, ‚Vorschrift‘) steht für: einen durch bestimmte Prozesse festgelegten, allgemein anerkannten Standard eine anerkannte Regel der Technik, siehe… …   Deutsch Wikipedia

  • Ideal (Philosophie) — Ideal (von gr. idéa, Gestalt, Urbild) ist ein Begriff der philosophischen Ästhetik, Ethik und Wissenschaftstheorie. Ideal ist ein Vollkommenheitsmuster. Für Immanuel Kant und Friedrich Schiller ist ein Ideal eine individuelle Idee. Beide… …   Deutsch Wikipedia

  • Ideal (Ringtheorie) — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… …   Deutsch Wikipedia

  • Ideal class group — In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If… …   Wikipedia

  • norm — 1. The usual value. 2. The desirable value or behavior. * * * naturally occurring radioactive material * * * norm nȯ(ə)rm n an established standard or average: as a) a set standard of development or achievement usu. derived from the average or… …   Medical dictionary

  • Field norm — In mathematics, the (field) norm is a mapping defined in field theory, to map elements of a larger field into a smaller one. Contents 1 Formal definitions 2 Example 3 Further properties 4 See also …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”