Ideal norm

Ideal norm

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

Contents

Relative norm

Let A be a Dedekind domain with the field of fractions K and B be the integral closure of A in a finite separable extension L of K. (In particular, B is Dedekind then.) Let \operatorname{Id}(A) and \operatorname{Id}(B) be the ideal groups of A and B, respectively (i.e., the sets of fractional ideals.) Following (Serre 1979), the norm map

N_{B/A}: \operatorname{Id}(B) \to \operatorname{Id}(A)

is a homomorphism given by

N_{B/A}(\mathfrak q) = \mathfrak{p}^{[B/\mathfrak q : A/\mathfrak p]}, \mathfrak q \in \operatorname{Spec} B, \mathfrak q | \mathfrak p.

If L,K are local fields, N_{B/A}(\mathfrak{b}) is defined to be a fractional ideal generated by the set \{ N_{L/K}(x) | x \in \mathfrak{b} \}. This definition is equivalent to the above and is given in (Iwasawa 1986).

For \mathfrak a \in \operatorname{Id}(A), one has N_{B/A}(\mathfrak a B) = \mathfrak a^n where n = [L:K]. The definition is also compatible with norm of an element: NB / A(xB) = NL / K(x)A.[1]

Let L / K be a finite Galois extension of number fields with rings of integers O_K\subset O_L. Then the preceding applies with A = \mathcal{O}_K, B = \mathcal{O}_L and one has

N_{L/K}(I)=O_K \cap\prod_{\sigma \in G}^{} \sigma (I)\,

which is an ideal of OK. The norm of a principal ideal generated by α is the ideal generated by the field norm of α.

The norm map is defined from the set of ideals of OL to the set of ideals of OK. It is reasonable to use integers as the range for N_{L/\mathbb{Q}}\, since Z has trivial ideal class group. This idea does not work in general since the class group may not be trivial.

Absolute norm

Let L be a number field with ring of integers OL, and α a nonzero ideal of OL. Then the norm of α is defined to be

N(\alpha) =\left [ O_L: \alpha\right ]=|O_L/\alpha|.\,

By convention, the norm of the zero ideal is taken to be zero.

If α is a principal ideal with α = (a), then N(α) = | N(a) | .

The norm is also completely multiplicative in that if α and β are ideals of OL, then N(α * β) = N(α)N(β).

The norm of an ideal α can be used to bound the norm of some nonzero element x\in \alpha by the inequality

|N(x)|\leq \left ( \frac{2}{\pi}\right ) ^ {r_2} \sqrt{|\Delta_L|}N(\alpha)

where ΔL is the discriminant of L and r2 is the number of pairs of complex embeddings of L into \mathbb{C}.

See also

References

  1. ^ Serre, 1. 5, Proposition 14.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Norm — or NORM may refer to: Contents 1 In academia 1.1 In mathematics 2 People 3 Miscellaneous 4 …   Wikipedia

  • Norm — (von lateinisch norma ursprünglich ‚Winkelmaß‘, dann aber auch ‚Richtschnur‘, ‚Maßstab‘, ‚Regel‘, ‚Vorschrift‘) steht für: einen durch bestimmte Prozesse festgelegten, allgemein anerkannten Standard eine anerkannte Regel der Technik, siehe… …   Deutsch Wikipedia

  • Ideal (Philosophie) — Ideal (von gr. idéa, Gestalt, Urbild) ist ein Begriff der philosophischen Ästhetik, Ethik und Wissenschaftstheorie. Ideal ist ein Vollkommenheitsmuster. Für Immanuel Kant und Friedrich Schiller ist ein Ideal eine individuelle Idee. Beide… …   Deutsch Wikipedia

  • Norm of an ideal — The norm of an ideal is defined in algebraic number theory. Let Ksubset L be two number fields with rings of integers O Ksubset O L. Suppose that the extension L/K is a Galois extension with :G= extstyle{Gal}(L/K). The norm of an ideal I of O L… …   Wikipedia

  • Ideal (Ringtheorie) — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… …   Deutsch Wikipedia

  • Ideal class group — In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If… …   Wikipedia

  • Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… …   Wikipedia

  • Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… …   Wikipedia

  • norm — 1. The usual value. 2. The desirable value or behavior. * * * naturally occurring radioactive material * * * norm nȯ(ə)rm n an established standard or average: as a) a set standard of development or achievement usu. derived from the average or… …   Medical dictionary

  • Different ideal — In algebraic number theory, the different ideal (sometimes simply the different) is defined to account for the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It was introduced… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”