- Hornwort
:"This is an article about the non-vascular plants. The name Hornwort is also often applied to an aquatic plant "Ceratophyllum demersum" in the family
Ceratophyllaceae "Taxobox
fossil_range = fossil range|90UpperCretaceous (but see text) to recent
name = Hornwort
image_width = 240px
image_caption = Phaeoceros laevis (L.) Prosk.
regnum =Plant ae
divisio = Anthocerotophyta
divisio_authority = Stotler & Stotl.-Crand. [cite journal | last = Stotler | first = Raymond E. | coauthors = Barbara J. Candall-Stotler | year = 1977 | title = A checklist of the liverworts and hornworts of North America | journal = The Bryologist | volume=80 | pages=405–428 | doi = 10.2307/3242017 ]
classis = Anthocerotopsida
subdivision_ranks = Families & Genera
subdivision =Leiosporocerotaceae
* "Leiosporoceros "Anthocerotaceae
* "Anthoceros "
* "Folioceros "
* "Sphaerosporoceros "Notothyladaceae
* "Notothylas "
* "Phaeoceros "
* "Paraphymatoceros "
* "Hattorioceros "
* "Mesoceros "Phymatocerotaceae
* "Phymatoceros "Dendrocerotaceae
* "Dendroceros "
* "Megaceros"
* "Nothoceros "
* "Phaeomegaceros "Hornworts are a group of
bryophyte s, ornon-vascular plant s, comprising the division Anthocerotophyta. The common name refers to the elongated horn-like structure, which is thesporophyte . The flattened, green plant body of a hornwort is thegametophyte plant.Hornworts may be found world-wide, though they tend to grow only in places that are damp or humid. Some species grow in large numbers as tiny weeds in the soil of gardens and cultivated fields. Large tropical and sub-tropical species of "Dendroceros" may be found growing on the bark of trees.
Description
The plant body of a hornwort is a
haploid gametophyte stage. This stage usually grows as a thin rosette or ribbon-like thallus between one and fivecentimeter s in diameter. Each cell of the thallus usually contains just onechloroplast per cell. In mostspecies , this chloroplast is fused with otherorganelle s to form a largepyrenoid that both manufactures and stores food. This particular feature is very unusual in landplant s, but is common amongalga e.Many hornworts develop internal
mucilage -filled cavities when groups of cells break down. These cavities are invaded byphotosynthetic cyanobacteria , especially species of "Nostoc ". Such colonies of bacteria growing inside the thallus give the hornwort a distinctive blue-green color. There may also be small "slime pores" on the underside of the thallus. These pores superficially resemble thestomata of other plants.The horn-shaped
sporophyte grows from anarchegonium embedded deep in the gametophyte. Hornworts sporophytes are unusual in that the sporophyte grows from ameristem near its base, instead of from its tip the way otherplant s do. Unlike liverworts, most hornworts have truestoma ta on the sporophyte as mosses do. The exceptions are the genera "Notothylas " and "Megaceros", which do not have stomata.When the sporophyte is mature, it has a multicellular outer layer, a central rod-like columella running up the center, and a layer of tissue in between that produces spores and pseudo-elaters. The pseudo-elaters are multi-cellular, unlike the elaters of liverworts. They have
helical thickenings that change shape in response to drying out, and thereby twist in and thereby help to disperse the spores. Hornwort spores are relatively large forbryophyte s, measuring between 30 and 80 µm in diameter or more. The spores are polar, usually with a distinctive Y-shaped tri-radiate ridge on theproximal surface, and with adistal surface ornamented with bumps or spines.Life cycle
The life of a hornwort starts from a
haploid spore. In most species, there is a single cell inside the spore, and a slender extension of this cell called the "germ tube" germinates from the proximal side of the spore. The tip of the germ tube divides to form anoctant of cells, and the firstrhizoid grows as an extension of the original germ cell. The tip continues to divide new cells, which produces a thalloidprotonema . By contrast, species of the familyDendrocerotaceae may begin dividing within the spore, becomingmulticellular and evenphotosynthetic before the spore germinates. In either case, the protonema is a transitory stage in the life of a hornwort.From the protonema grows the adult
gametophyte , which is the persistent and independent stage in the life cycle. This stage usually grows as a thin rosette or ribbon-like thallus between one and fivecentimeter s in diameter, and several layers of cells in thickness. It is green or yellow-green from thechlorophyll in its cells, or bluish-green when colonies of cyanobacteria grow inside the plant.When the gametophyte has grown to its adult size, it produces the sex organs of the hornwort. Most plants are monoicous, with both sex organs on the same plant, but some plants (even within the same species) are dioicous, with separate male and female gametophytes. The female organs are known as archegonia (singular archegonium) and the male organs are known as antheridia (singular antheridium). Both kinds of organs develop just below the surface of the plant and are only later exposed by disintegration of the overlying cells.
The biflagellate sperm must swim from the antheridia, or else be splashed to the archegonia. When this happens, the sperm and egg cell fuse to form a
zygote , the cell from which the sporophyte stage of the life cycle will develop. Unlike all other bryophytes, the first cell division of the zygote islongitudinal . Further divisions produce three basic regions of the sporophyte.At the bottom of the
sporophyte (closest to the interior of the gametophyte), is a foot. This is a globular group of cells that receives nutrients from the parent gametophyte, on which the sporophyte will spend its entire existence. In the middle of the sporophyte (just above the foot), is ameristem that will continue to divide and produce new cells for the third region. This third region is the capsule. Both the central and surface cells of the capsule are sterile, but between them is a layer of cells that will divide to produce pseudo-elaters andspore s. These are released from the capsule when it splits lengthwise from the tip.Evolutionary history
While the fossil record of
crown group hornworts only begins in the upperCretaceous , the lower Devonian "Horneophyton " may represent a stem group to the clade, as it possesses asporangium with central columella not attached at the roof.cite journal
author = Qiu, Y.L.
coauthors = Li, L.; Wang, B.; Chen, Z.; Knoop, V.; Groth-malonek, M.; Dombrovska, O.; Lee, J.; Kent, L.; Rest, J.; Others,
year = 2006
title = The deepest divergences in land plants inferred from phylogenomic evidence
journal = Proceedings of the National Academy of Sciences
volume = 103
issue = 42
pages = 15511
doi = 10.1073/pnas.0603335103
pmid = 17030812] However, the same form of columella is also characteristic of basal moss groups, such as theSphagnopsida andAndreaeopsida , and has been interpreted as a character common to all early land plants withstoma ta. [cite book | last=Kenrick | first=Paul |coauthors=Peter R. Crane | year=1997 | title= The Origin and Early Diversification of Land Plants: A Cladistic Study | location=Washington, D. C. | publisher= Smithsonian Institution Press | pages=55–56 | isbn=1-56098-730-8 ]Classification of Hornworts
Hornworts were traditionally considered a class within the Division Bryophyta (
bryophyte s). However, it now appears that this group isparaphyletic , so the hornworts tend to be given their own division, called Anthocerotophyta. The Bryophyta is now restricted to include onlymoss es.There is a single class of hornworts, called Anthocerotopsida, or traditionally Anthocerotae. This class includes a single order of hornworts (Anthocerotales) in this classification scheme. In some other classification schemes, a second order Notothyladales (containing only the
genus "Notothylas ") is recognized because of the unique and unusual features present in that group.Among land plants, hornworts appear to be one of the oldest surviving lineages; cladistic analysis implies that the group originated prior to the
Devonian , around the same time as the mosses and liverworts. There are only about 100species known, but new species are still being discovered. The number and names of genera are a current matter of investigation, and several competing classification schemes have been published since 1988.A more recent study of molecular, ultrastructural and morphological data has yielded a new classification of hornworts,cite journal | last = Duff | first = R. Joel | coauthors = Juan Carlos Villarreal, D. Christine Cargill, & Karen S. Renzaglia | year = 2007 | title = Progress and challenges toward a phylogeny and classification of the hornworts | journal = The Bryologist | volume=110 | issue=2 | pages=214–243 | doi = 10.1639/0007-2745(2007)110 [214:PACTDA] 2.0.CO;2 ] given below:
Families and genera
Leiosporocerotaceae
* "Leiosporoceros "Anthocerotaceae
* "Anthoceros "
* "Folioceros "
* "Sphaerosporoceros "Notothyladaceae
* "Notothylas "
* "Phaeoceros "
* "Paraphymatoceros "
* "Hattorioceros "
* "Mesoceros "Phymatocerotaceae
* "Phymatoceros "Dendrocerotaceae
* "Dendroceros "
* "Megaceros"
* "Nothoceros "
* "Phaeomegaceros "See also
*
Embryophyte
*Bryophyte References
* Chopra, R. N. & Kumra, P. K. (1988). "Biology of Bryophytes". New York: John Wiley & Sons. ISBN 0–470–21359–0.
* Duff, R.J., J.C. Villarreal, D.C. Cargill & K.S. Renzaglia. (2007). Progress and challenges toward developing a phylogeny and classification of the hornworts. "The Bryologist" 110: 214–243.
* Grolle, Riclef (1983). "Nomina generica Hepaticarum; references, types and synonymies". "Acta Botanica Fennica" 121, 1–62.
* Hasegawa, J. (1994). "New classification of Anthocerotae". "J. Hattori Bot. Lab" 76: 21–34.
* Renzaglia, Karen S. (1978). "A comparative morphology and developmental anatomy of the Anthocerotophyta". "J. Hattori Bot. Lab" 44: 31–90.
* Renzaglia, Karen S. & Vaughn, Kevin C. (2000). Anatomy, development, and classification of hornworts. In A. Jonathan Shaw & Bernard Goffinet (Eds.), "Bryophyte Biology", pp. 1–20. Cambridge:Cambridge University Press . ISBN 0–521–66097–1.
* Schofield, W. B. (1985). "Introduction to Bryology". New York: Macmillan.
* Schuster, Rudolf M. (1992). "The Hepaticae and Anthocerotae of North America, East of the Hundredth Meridian, Volume VI". Chicago:Field Museum of Natural History .
* Smith, Gilbert M. (1938). "Cryptogamic Botany, Volume II: Bryophytes and Pteridophytes". New York: McGraw-Hill Book Company.
* Watson, E. V. (1971). "The Structure and Life of Bryophytes" (3rd ed.). London: Hutchinson University Library. ISBN 0–09–109301–5.External links
* [http://www3.uakron.edu/biology/hornworts/hornworts.html Hornwort Web Portal]
* [http://koning.ecsu.ctstateu.edu/Plant_Biology/hornwort.html Hornwort biology information]
* [http://www.ucmp.berkeley.edu/plants/anthocerotophyta.html Anthocerotophyta description and fossil history at UCMP]
* [http://www.natureserve.org/explorer/speciesIndex/Class_Anthocerotopsida_106589_1.htm Hornwort species in the United States and Canada]
* [http://www.peripatus.gen.nz/Taxa/Bryophyta/NZAnthocerotae.html New Zealand Anthocerotae]
Wikimedia Foundation. 2010.