LIBOR Market Model

LIBOR Market Model

= Model =

The LIBOR Market Model, also known as the BGM Model (Brace Gatarek Musiela Model, in reference of the names of some of the inventors), is a financial model of interest rates. It is used for pricing interest rate derivatives, especially exotic derivatives like Bermudan swaptions. The model primitives are a set of forward rates (also called LIBORs), which have the advantage of being directly observable in the market. Each forward rate is modeled by a lognormal process, i.e. a Black model. Thus the LIBOR market model may be interpreted as a collection of Black models considered under a common pricing measure.

Model Dynamic

The LIBOR market model models a set of n forward rates L_{i}, i=1,ldots,n as lognormal processes:frac{d L_{i}(t)}{L_{i}(t)} = mu_{i}(t) d t + sigma_{i}(t) d W_{i} ext{,} qquad i=1,ldots,n ext{.}Here, L_{i} denotes the forward rate for the period [T_{i},T_{i+1}] . For each single forward rate the model corresponds to the Black model. The novelty is that, in contrast to the Black model, the LIBOR market model describes the dynamic of a whole family of forward rates under a common measure.

Literature

Original Articles

* Alan Brace, Dariusz Gatarek, Marek Musiela: The Market Model of Interest Rate Dynamics. Mathematical Finance 7, page 127. Blackwell 1997.
* Farshid Jamshidian: LIBOR and Swap Market Models and Measures, Finance and Stochastics 1, 1997, 293-330.
* Kristian R. Miltersen, Klaus Sandmann, Dieter Sondermann: Closed Form Solutions for Term Structure Derivatives with Lognormal Interest Rates. Journal of Finance 52, 409-430. 1997.

Recommended Books

* Alan Brace: "Engineering BGM". Chapman & Hall, 2008. ISBN 1-584-88968-3.
* Damiano Brigo, Fabio Mercurio: "Interest Rate Models - Theory and Practice". Springer, Berlin, 2001. ISBN 3-540-41772-9.
* Christian P. Fries: "Mathematical Finance: Theory, Modeling, Implementation". Wiley, 2007. ISBN 0470047224.
* Dariusz Gatarek, Przemyslaw Bachert, Robert Maksymiuk: "The LIBOR Market Model in Practice". John Wiley & Sons, 2007. ISBN 0-470-01443-1.
* Marek Musiela, Marek Rutkowski: "Martingale Methods in Financial Modelling: Theory and Applications". Springer, 1997. ISBN 3-540-61477-X.
* Riccardo Rebonato: "Modern Pricing of Interest-Rate Derivatives: The Libor Market Model and Beyond". Princeton University Press, 2002. ISBN 0-691-08973-6.
* John Schoenmakers: "Robust Libor Modelling and Pricing of Derivative Products". Chapman & Hall, 2004. ISBN 1-584-88441-X.

External links

* [http://www.christian-fries.de/finmath/applets/ Java applets for pricing under a LIBOR market model and Monte-Carlo methods]
* [http://www.christian-fries.de/finmath/book/ Sample chapters of the book "Mathematical Finance" (ISBN 0470047224)] , with, e.g,, a derivation of the LIBOR market model drift.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • LIBOR Markt Modell — Das LIBOR Markt Modell ist ein Zinsstrukturmodell zur Bewertung von Zinsderivaten, insbesondere komplexen Zinsderivaten. Im Gegensatz zu anderen Modellen verwendet es am Markt beobachtbare LIBOR Sätze. Inhaltsverzeichnis 1 Model 2 Literatur 2.1… …   Deutsch Wikipedia

  • LIBOR-Markt-Modell — Das LIBOR Markt Modell (auch BGM Modell nach dessen Autoren Brace, Gatarek und Musiela) ist ein Zinsstrukturmodell zur Bewertung von Zinsderivaten, insbesondere komplexen Zinsderivaten. Im Gegensatz zu anderen Modellen verwendet es am Markt… …   Deutsch Wikipedia

  • Black model — The Black model (sometimes known as the Black 76 model) is a variant of the Black Scholes option pricing model. Its primary applications are for pricing bond options, interest rate caps / floors, and swaptions. It was first presented in a paper… …   Wikipedia

  • Stock market bottom — A stock market bottom is a trend reversal that marks the end of a market downturn and the beginning of an upward moving trend. A bottom may occur because of the presence of a cycle, or because of panic selling as a reaction to an adverse… …   Wikipedia

  • SABR Volatility Model — In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for Stochastic Alpha, Beta, Rho , referring to the parameters of the model.The SABR… …   Wikipedia

  • Yield curve — This article is about yield curves as used in finance. For the term s use in physics, see Yield curve (physics). Not to be confused with Yield curve spread – see Z spread. The US dollar yield curve as of February 9, 2005. The curve has a typical… …   Wikipedia

  • Outline of finance — The following outline is provided as an overview of and topical guide to finance: Finance – addresses the ways in which individuals, businesses and organizations raise, allocate and use monetary resources over time, taking into account the risks… …   Wikipedia

  • Zinsstrukturmodelle — Mit Hilfe von Zinsstrukturmodellen möchte man die empirisch beobachtbaren Zusammenhänge zwischen Zinssätzen unterschiedlicher Laufzeiten durch möglichst wenige Zinsstrukturfaktoren erklären, welche idealerweise voneinander unabhängig sind. Diese… …   Deutsch Wikipedia

  • Zinsstrukturmodell — Mit Hilfe von Zinsstrukturmodellen möchte man die empirisch beobachtbaren Zusammenhänge zwischen Zinssätzen unterschiedlicher Laufzeiten durch möglichst wenige Zinsstrukturfaktoren erklären und die mögliche zeitliche Entwicklung von Zinssätzen… …   Deutsch Wikipedia

  • Mathematical finance — is a field of applied mathematics, concerned with financial markets. The subject has a close relationship with the discipline of financial economics, which is concerned with much of the underlying theory. Generally, mathematical finance will… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”