Reuleaux tetrahedron

Reuleaux tetrahedron
Animation of a Reuleaux tetrahedron, showing also the tetrahedron from which it is formed.
Four spheres intersect to form a Reuleaux tetrahedron.

The Reuleaux tetrahedron is the intersection of four spheres of radius s centered at the vertices of a regular tetrahedron with side length s. The sphere through each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron. The Reuleaux tetrahedron has the same face structure as a regular tetrahedron, but with curved faces: four vertices, and four curved faces, connected by six circular-arc edges.

This shape is defined and named by analogy to the Reuleaux triangle, a two-dimensional curve of constant width. One can find repeated claims in the mathematical literature that the Reuleaux tetrahedron is analogously a surface of constant width, but it is not true: the two midpoints of opposite edge arcs are separated by a larger distance,

(\sqrt3 - \sqrt2/2)s\approx 1.0249s.

The volume of a Reuleaux tetrahedron is [1]

\frac{s^3}{12}(3\sqrt2 - 49\pi + 162\tan^{-1}\sqrt2)\approx 0.422s^3


Meissner bodies

Meissner and Schilling[2] showed how to modify the Reuleaux tetrahedron to form a surface of constant width, by replacing three of its edge arcs by curved patches formed as the surfaces of rotation of a circular arc. According to which three edge arcs are replaced (three that have a common vertex or three that form a triangle) there result two noncongruent shapes that are sometimes called Meissner bodies or Meissner tetrahedra (pictures and films in Weber 2009[3]). Bonnesen and Fenchel[4] conjectured that Meissner tetrahedra are the minimum-volume three-dimensional shapes of constant width, a conjecture which is still open[5]. In connection with this problem, Campi, Colesanti and Gronchi[6] showed that the minimum volume surface of revolution with constant width is the surface of revolution of a Reuleaux triangle through one of its symmetry axes.

References

  1. ^ Weisstein, Eric W (2008), Reuleaux Tetrahedron, MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/ReuleauxTetrahedron.html 
  2. ^ Meissner, Ernst; Schilling, Friedrich (1912), "Drei Gipsmodelle von Flächen konstanter Breite", Z. Math. Phys. 60: 92–94 
  3. ^ Weber, Christof (2009). "What does this solid have to do with a ball?". http://www.swisseduc.ch/mathematik/material/gleichdick/docs/meissner_en.pdf.  There are also films of both types of Meissner body rotating.
  4. ^ Bonnesen, Tommy; Fenchel, Werner (1934), Theorie der konvexen Körper, Springer-Verlag, pp. 127–139 
  5. ^ Kawohl, Bernd; Weber, Christof (2011), "Meissner's Mysterious Bodies", Math. Intell. 33: Nr. 3, 94–101 
  6. ^ Campi, Stefano; Colesanti, Andrea; Gronchi, Paolo (1996), "Minimum problems for volumes of convex bodies", Partial Differential Equations and Applications: Collected Papers in Honor of Carlo Pucci, Lecture Notes in Pure and Applied Mathematics, no. 177, Marcel Dekker, pp. 43–55 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Reuleaux triangle — A Reuleaux polygon is a curve of constant width that is, a curve in which all diameters are the same length. The best known version is the Reuleaux triangle. Both are named after Franz Reuleaux, a 19th century German engineer who did pioneering… …   Wikipedia

  • Reuleaux-Dreieck — Das Reuleaux Dreieck ist das einfachste nicht triviale Beispiel eines Gleichdicks: eine Kurve konstanter Breite – als Breite wird hier der Abstand der Punkte einer Seite zur jeweils gegenüberliegenden Ecke bezeichnet. Das Reuleaux Dreieck ist… …   Deutsch Wikipedia

  • Reuleaux-Tetraeder — Animation des Reuleaux Tetraeders, mit erzeugendem regelmäßigen Tetraeder. Vier sich schneidende Kugeln, die das Reuleaux Tetraeder erzeugen. Das Reuleaux Tetraeder ist die Schnittmen …   Deutsch Wikipedia

  • Tétraèdre de Reuleaux — Animation d un tétraèdre de Reuleaux, mettant également en évidence le tétraèdre à partir duquel il est construit. En géométrie, le tétraèdre de Reuleaux est une forme géométrique, analogue du triangle de Reuleaux à trois dimensions. Sommai …   Wikipédia en Français

  • Tetraedro de Reuleaux — Animación de un tetraedro de Reuleaux (en blanco), mostrando también en rojo el tetraedro a partir del que se genera. El tetraedro de Reuleaux formado por la intersección de cuatro esferas …   Wikipedia Español

  • Треугольник Рёло — Построение треугольника Рёло Треугольник Рёло[* 1] предста …   Википедия

  • Meißner-Körper — Animation des Reuleaux Tetraeders, mit erzeugendem regelmäßigen Tetraeder. Vier sich schneidende Kugeln, die das Reuleaux Tetraeder erzeugen …   Deutsch Wikipedia

  • Curve of constant width — A Reuleaux triangle is a curve of constant width. The sides of the square are supporting lines: each touches the curve but does not intersect the interior. The Reuleaux triangle can be rotated whilst always touching each side of the square in a… …   Wikipedia

  • Тетраэдр Рёло — Тетраэдр Рёло  тело, являющееся пересечением четырёх одинаковых шаров, центры к …   Википедия

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”