Widom scaling

Widom scaling

Widom scaling is a hypothesis in Statistical mechanics regarding the free energy of a magnetic system near its critical point which leads to the critical exponents becoming no longer independent so that they can be parameterized in terms of two values.

Widom scaling is an example of universality.

Definitions

The critical exponents alpha, alpha', eta, gamma, gamma' and delta are defined in terms of the behaviour of the order parameters and response functions near the critical point as follows

: M(t,0) simeq (-t)^{eta}, for t uparrow 0 : M(0,H) simeq |H|^{1/ delta} mathrm{sign}(H), for H ightarrow 0 : chi_T(t,0) simeq egin{cases} (t)^{-gamma}, & extrm{for} t downarrow 0 \ (-t)^{-gamma'}, & extrm{for} t uparrow 0 end{cases}

: c_H(t,0) simeq egin{cases} (t)^{-alpha} & extrm{for} t downarrow 0 \ (-t)^{-alpha'} & extrm{for} t uparrow 0 end{cases}

where

: t equiv frac{T-T_c}{T_c} measures the temperature relative to the critical point.

Derivation

The scaling hypothesis is that near the critical point, the free energy f(t,H) can be written as the sum of a slowly varying regular part f_r and a singular part f_s, with the singular part being a scaling function, ie, a homogeneous function, so that

: f_s(lambda^p t, lambda^q H) = lambda f_s(t, H)

Then taking the partial derivative with respect to "H" and the form of "M(t,H)" gives

: lambda^q M(lambda^p t, lambda^q H) = lambda M(t, H)

Setting H=0 and lambda = (-t)^{-1/p} in the preceding equation yields

: M(t,0) = (-t)^{frac{1-q}{p M(-1,0), for t uparrow 0

Comparing this with the definition of eta yields its value,

: eta = frac{1-q}{p}

Similarly, putting t=0 and lambda = H^{-1/q} into the scaling relation for "M" yields

: delta = frac{q}{1-q}

Applying the expression for the isothermal susceptibility chi_T in terms of "M" to the scaling relation yields

: lambda^{2q} chi_T (lambda^p t, lambda^q H) = lambda chi_T (t, H)

Setting "H=0" and lambda = (t)^{-1/p} for t downarrow 0 (resp. lambda = (-t)^{-1/p} for t uparrow 0 ) yields

: gamma = gamma' = frac{2q -1}{p}

Similarly for the expression for specific heat c_H in terms of "M" to the scaling relation yields

: lambda^{2p} c_H ( lambda^p t, lambda^q H) = lambda c_H(t, H)

Taking "H=0" and lambda = (t)^{-1/p} for t downarrow 0 (or lambda = (-t)^{-1/p} for t uparrow 0) yields

: alpha = alpha' = 2 -frac{1}{p}

As a consequence of Widom scaling, not all critical exponents are independent but they can be parameterized by two numbers p, q in mathbb{R} with the relations expressed as

: alpha = alpha' = 2 - eta(delta +1) = 2 - frac{1}{p} : gamma = gamma' = eta(delta -1)

The relations are experimentally well verified for magnetic systems and fluids.

References

H.E. Stanley, "Introduction to Phase Transitions and Critical Phenomena"


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Scaling — may refer to: * Scaling (geometry), a linear transformation that enlarges or diminishes objects * Scaling (computer network), a network s ability to function as the number of people or computers on the network increases. Related to Scalability *… …   Wikipedia

  • Ben Widom — Benjamin Widom (* 1927) ist ein US amerikanischer Chemiker und Physiker, der sich mit statistischer Mechanik und physikalischer Chemie beschäftigt. Inhaltsverzeichnis 1 Leben und Wirken 2 Schriften 3 Literatur 4 Weblinks 5 Anmerkungen …   Deutsch Wikipedia

  • Benjamin Widom — is the Goldwin Smith Professor of Chemistry at Cornell University. His research interests include physical chemistry and statistical mechanics. In 1998, Widom was awarded the Boltzmann Medal for his illuminating studies of the statistical… …   Wikipedia

  • Benjamin Widom — (* 1927) ist ein US amerikanischer Chemiker und Physiker, der sich mit statistischer Mechanik und physikalischer Chemie beschäftigt. Inhaltsverzeichnis 1 Leben und Wirken 2 Schriften 3 Literatur 4 Weblin …   Deutsch Wikipedia

  • Critical exponent — Critical exponents describe the behaviour of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on the… …   Wikipedia

  • Critical phenomena — In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations… …   Wikipedia

  • Critical point (thermodynamics) — Carbon dioxide creating a fog when cooling from supercritical to critical temperature In physical chemistry, thermodynamics, chemistry and condensed matter physics, a critical point, also called a critical state, specifies the conditions… …   Wikipedia

  • Glossaire du data mining — Exploration de données Articles principaux Exploration de données Fouille de données spatiales Fouille du web Fouille de flots de données Fouille de textes …   Wikipédia en Français

  • SimRank — is a general similarity measure, based on a simple and intuitive graph theoretic model.SimRank is applicable in any domain with object to object relationships, that measures similarity of the structural context in which objects occur, based on… …   Wikipedia

  • Groupe De Renormalisation — En mécanique statistique, le groupe de renormalisation (qui est plutôt un semi groupe, les transformations n étant pas inversibles) est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”