Midy's theorem

Midy's theorem

In mathematics, Midy's theorem, named after French mathematician E. Midy,[1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period. If the period of the decimal representation of a/p is 2n, so that

\frac{a}{p}=0.\overline{a_1a_2a_3\dots a_na_{n+1}\dots a_{2n}}

then the digits in the second half of the repeating decimal period are the 9s complement of the corresponding digits in its first half. In other words

a_i+a_{i+n}=9 \,
a_1\dots a_n+a_{n+1}\dots a_{2n}=10^n-1. \,

For example

\frac{1}{17}=0.\overline{0588235294117647}\text{ and }05882352+94117647=99999999. \,

Contents

Extended Midy's theorem

If k is any divisor of the period of the decimal expansion of a/p (where p is again a prime), then Midy's theorem can be generalised as follows. The extended Midy's theorem[2] states that if the repeating portion of the decimal expansion of a/p is divided into k-digit numbers, then their sum is a multiple of 10k − 1.

For example,

\frac{1}{19}=0.\overline{052631578947368421} \,

has a period of 18. Dividing the repeating portion into 6-digit numbers and summing them gives

052631 + 578947 + 368421 = 999999.

Similarly, dividing the repeating portion into 3-digit numbers and summing them gives

052+631+578+947+368+421=2997=3\times999.

Midy's theorem in other bases

Midy's theorem and its extension do not depend on special properties of the decimal expansion, but work equally well in any base b, provided we replace 10k − 1 with bk − 1 and carry out addition in base b. For example, in octal

\frac{1}{19}=0.\overline{032745}_8
032_8+745_8=777_8 \,
03_8+27_8+45_8=77_8. \,

Proof of Midy's theorem

Short proofs of Midy's theorem can be given using results from group theory. However, it is also possible to prove Midy's theorem using elementary algebra and modular arithmetic:

Let p be a prime and a/p be a fraction between 0 and 1. Suppose the expansion of a/p in base b has a period of , so


\begin{align}
& \frac{a}{p} = [0.\overline{a_1a_2\dots a_\ell}]_b \\[6pt]
& \Rightarrow\frac{a}{p}b^\ell = [a_1a_2\dots a_\ell.\overline{a_1a_2\dots a_\ell}]_b \\[6pt]
& \Rightarrow\frac{a}{p}b^\ell = N+[0.\overline{a_1a_2\dots a_\ell}]_b=N+\frac{a}{p} \\[6pt]
& \Rightarrow\frac{a}{p} = \frac{N}{b^\ell-1}
\end{align}

where N is the integer whose expansion in base b is the string a1a2...a.

Note that b  − 1 is a multiple of p because (b  − 1)a/p is an integer. Also bn−1 is not a multiple of p for any value of n less than , because otherwise the repeating period of a/p in base b would be less than .

Now suppose that  = hk. Then b  − 1 is a multiple of bk − 1. Say b  − 1 = m(bk − 1), so

\frac{a}{p}=\frac{N}{m(b^k-1)}.

But b  − 1 is a multiple of p; bk − 1 is not a multiple of p (because k is less than  ); and p is a prime; so m must be a multiple of p and

\frac{am}{p}=\frac{N}{b^k-1}

is an integer. In other words

N\equiv0\pmod{b^k-1}. \,

Now split the string a1a2...a into h equal parts of length k, and let these represent the integers N0...Nh − 1 in base b, so that


\begin{align}
N_{h-1} & = [a_1\dots a_k]_b \\
N_{h-2} & = [a_{k+1}\dots a_{2k}]_b \\
& {}\  \   \vdots \\
N_0 & = [a_{l-k+1}\dots a_l]_b
\end{align}

To prove Midy's extended theorem in base b we must show that the sum of the h integers Ni is a multiple of bk − 1.

Since bk is congruent to 1 modulo bk − 1, any power of bk will also be congruent to 1 modulo bk − 1. So

N=\sum_{i=0}^{h-1}N_ib^{ik}=\sum_{i=0}^{h-1}N_i(b^{k})^i
\Rightarrow N \equiv \sum_{i=0}^{h-1}N_i \pmod{b^k-1}
\Rightarrow \sum_{i=0}^{h-1}N_i \equiv 0 \pmod{b^k-1}

which proves Midy's extended theorem in base b.

To prove the original Midy's theorem, take the special case where h = 2. Note that N0 and N1 are both represented by strings of k digits in base b so both satisfy

0 \leq N_i \leq b^k-1. \,

N0 and N1 cannot both equal 0 (otherwise a/p = 0) and cannot both equal bk − 1 (otherwise a/p = 1), so

0 < N_0+N_1 < 2(b^k-1) \,

and since N0 + N1 is a multiple of bk − 1, it follows that

N_0+N_1 = b^k-1. \,

Notes

  1. ^ A Theorem on Repeating Decimals; W. G. Leavitt; American Mathematical Monthly, Vol. 74, No. 6 (June – July, 1967) , pp. 669–673
  2. ^ Bassam Abdul-Baki, Extended Midy's Theorem, 2005.

References

  • Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158-160, 1957.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Théorème de midy — En mathématiques, le Théorème de Midy, appelé ainsi en hommage au mathématicien français E. Midy[1], est un énoncé concernant le développement décimal des fractions a/p avec p un nombre premier et a/p est le développement en décimale récurrente… …   Wikipédia en Français

  • Théorème de Midy — En mathématiques, le Théorème de Midy, appelé ainsi en hommage au mathématicien français E. Midy[1], est un énoncé concernant le développement décimal des fractions a/p avec p un nombre premier et a/p est le développement en décimale récurrente… …   Wikipédia en Français

  • 0.999... — In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0 …   Wikipedia

  • 0,9 periódico — En matemáticas, 0,999... es el número decimal periódico que se demuestra denota[1] al número 1. En otras palabras, los símbolos 0,999... y 1 son dos representaciones distintas del mismo número real. Las demostraciones matemáticas de esta igualdad …   Wikipedia Español

  • Développement décimal de l'unité — En mathématiques, le développement décimal périodique qui s écrit , que l on dénote encore par , ou , représente un nombre réel dont on peut montrer que c e …   Wikipédia en Français

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Repeating decimal — A decimal representation of a real number is called a repeating decimal (or recurring decimal) if at some point it becomes periodic: there is some finite sequence of digits that is repeated indefinitely. For example, the decimal representation of …   Wikipedia

  • MIDI (disambiguation) — Midi may refer to: Contents 1 Music 2 Entertainment 3 People 4 Places 5 Other …   Wikipedia

  • 0,(9) — или 0,999… ( ) («ноль и девять в периоде»)  периодическая десятичная дробь, представляющая число 1. Другими словами …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”