Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… … Wikipedia
Group of Lie type — In mathematics, a group of Lie type G(k) is a (not necessarily finite) group of rational points of a reductive linear algebraic group G with values in the field k. Finite groups of Lie type form the bulk of nonabelian finite simple groups.… … Wikipedia
CA group — In mathematics, in the realm of group theory, a group is said to be a CA group or centralizer Abelian group if the centralizer of any nonidentity element is an Abelian subgroup.CA groups were introduced in the context of the classification of… … Wikipedia
Link group — In knot theory, an area of mathematics, the link group of a link is an analog of the knot group of a knot. They were described by John Milnor in his Bachelor s thesis, (Milnor 1954). Contents 1 Definition 2 Examples 3 … Wikipedia
Lorentz group — Group theory Group theory … Wikipedia
Simple group — In mathematics, a simple group is a group which is not the trivial group and whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, a normal subgroup and the… … Wikipedia
Cauchy's theorem (group theory) — Cauchy s theorem is a theorem in the mathematics of group theory, named after Augustin Louis Cauchy. It states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G ), then G contains an element… … Wikipedia
Abelian group — For other uses, see Abelian (disambiguation). Abelian group is also an archaic name for the symplectic group Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product,… … Wikipedia
Topological group — Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum semidirect product, wreath product … Wikipedia
Free group — In mathematics, a group G is called free if there is a subset S of G such that any element of G can be written in one and only one way as a product of finitely many elements of S and their inverses (disregarding trivial variations such as st 1 =… … Wikipedia