Countercurrent multiplication

Countercurrent multiplication


A countercurrent multiplier system is a mechanism that expends energy to create a concentration gradient.

It is found widely in nature and especially in mamalian organs. For example, it can refer to the process underlying the process of urine concentration, that is, the production of hyperosmotic urine by the mammalian kidney.[citation needed] The ability to concentrate urine is also present in birds, but involves another mechanism which is not comparable.[citation needed]

Countercurrent multiplication is frequently mistaken for Countercurrent exchange a similar but different mechanism where

Physiological principles

The term derives from the form and function of the loop of Henle, which consists of two parallel limbs of renal tubules running in opposite directions, separated by the interstital space of the renal medulla.[citation needed]

  • Water flows from the tubular fluid of the descending limb of the loop of Henle into the medullary space.[citation needed]
  • The ascending limb is impermeable to water (because of a lack of aquaporin, a common transporter protein for water channels in all cells except the walls of the ascending limb of the loop of Henle), but here Na+, Cl-, and K+ are actively transported into the medullary space, making the filtrate hypotonic (with a higher water potential). This constitutes the single effect of the countercurrent multiplication process.[citation needed]
  • Active transport of these ions from the thick ascending limb creates an osmotic pressure drawing water from the descending limb into the hyperosmolar medullary space, making the filtrate hypertonic (with a lower water potential).[citation needed]
  • The countercurrent flow within the descending and ascending limb thus increases, or multiplies the osmotic gradient between tubular fluid and interstitial space.[citation needed]

Details

Countercurrent multiplication was originally studied as a mechanism describing the mechanism whereby urine is concentrated in the nephron. Initially studied in the 1950s by Gottschalk and Mylle following Werner Kuhn's postulations[1], this mechanism gained popularity only after a series of complicated micropuncture experiments.[2].

The proposed mechanism consists of pump, equilibration, and shift steps. In the proximal tubule, the osmolarity is isomolar to plasma (300 mOsm). In a hypothetical model where there was no equilibration or pump steps, the tubular fluid and interstitial osmolarity would be 300 mOsm as well.[citation needed]

Pump: The Na+/K+/2Cl- transporter in the ascending limb of the loop of Henle helps to create a gradient by shifting Na+ into the medullary interstitium. The thick ascending limb of the loop of Henle is the only part of the nephron lacking in aquaporin - a common transporter protein for water channels. This makes the thick ascending limb impermeable to water. The action of the Na+/K+/2Cl- transporter therefore creates a hypoosmolar solution in the tubular fluid and a hyperosmolar fluid in the interstitium, since water cannot follow the solutes to produce osmotic equilibrium.[citation needed]

Equilibration: Since the descending limb of the loop of henle consists of very leaky epithelium, the fluid inside the descending limb becomes hyperosmolar.[citation needed]

Shift: The movement of fluid through the tubules causes the hyperosmotic fluid to move further down the loop. Repeating many cycles causes fluid to be near isosmolar at the top of Henle's loop and very concentrated at the bottom of the loop. Interestingly, animals with a need for very concentrated urine (such as desert animals) have very long loops of Henle to create a very large osmotic gradient. Animals that have abundant water on the other hand (such as beavers) have very short loops. The vasa recta have a similar loop shape so that the gradient does not dissipate into the plasma.[citation needed]

The mechanism of counter current multiplication works together with the vasa recta's counter current exchange to prevent the wash out of salts and maintain a high osmolarity at the inner medulla.[citation needed]

References

  1. ^ Gottschalk, C. W.; Mylle, M. (1958), "Evidence that the mammalian nephron functions as a countercurrent multiplier system", Science 128 (3324): 594, doi:10.1126/science.128.3324.594, PMID 13580223 .
  2. ^ Gottschalk, C. W.; Mylle, M. (1959), "Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis", American Journal of Physiology 196 (4): 927–936, PMID 13637248, http://ajplegacy.physiology.org/cgi/content/abstract/196/4/927 .

Wikimedia Foundation. 2010.

Поможем написать курсовую

Look at other dictionaries:

  • countercurrent multiplication — the mechanism in the loops of Henle of the renal tubules by which urine is concentrated; it is dependent upon unique solute transport processes at different parts of the loops of Henle and the vasa recta …   Medical dictionary

  • countercurrent mechanism — countercurrent multiplication mechanism see under multiplication …   Medical dictionary

  • Countercurrent exchange — Counter heat current exchange: Note the gradually declining differential and that the once hot and cold streams exit at the reversed temperature difference; the hotter entering stream becomes the exiting cooler stream and vice versa.… …   Wikipedia

  • countercurrent — 1. Flowing in an opposite direction. 2. A current flowing in a direction opposite to another current. * * * coun·ter·cur·rent kau̇nt ər .kər ənt, .kə rənt n a current flowing in a direction opposite that of another current countercurrent .kau̇nt… …   Medical dictionary

  • Aquaporin — Aquaporins are integral membrane proteins from a larger family of major intrinsic proteins (MIP) that form pores in the membrane of biological cells.cite journal | author = Agre P | title = The aquaporin water channels | journal = Proc Am Thorac… …   Wikipedia

  • renal system — ▪ anatomy Introduction  in humans (human body), organ system that includes the kidneys, where urine is produced, and the ureters, bladder, and urethra for the passage, storage, and voiding of urine.       In many respects the human excretory, or… …   Universalium

  • analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”