Rigged Hilbert space

Rigged Hilbert space

In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study spectral theory in the broad sense. They can bring together the 'bound state' (eigenvector) and 'continuous spectrum', in one place.

Contents

Motivation

Since a function such as the canonical homomorphism of the real line into the complex plane

 x \mapsto e^{ix} \quad ,

which is in an obvious sense an eigenvector of the differential operator

-i\frac{d}{dx}

on the real line R, is not square-integrable for the usual Borel measure on R, this requires some way of stepping outside the strict confines of the Hilbert space theory. This was supplied by the apparatus of Schwartz distributions, and a generalized eigenfunction theory was developed in the years after 1950.

Functional analysis approach

The concept of rigged Hilbert space places this idea in abstract functional-analytic framework. Formally, a rigged Hilbert space consists of a Hilbert space H, together with a subspace Φ which carries a finer topology, that is one for which the natural inclusion

 \Phi \subseteq H

is continuous. It is no loss to assume that Φ is dense in H for the Hilbert norm. We consider the inclusion of dual spaces H* in Φ*. The latter, dual to Φ in its 'test function' topology, is realised as a space of distributions or generalised functions of some sort, and the linear functionals on the subspace Φ of type

\phi\mapsto\langle v,\phi\rangle

for v in H are faithfully represented as distributions (because we assume Φ dense).

Now by applying the Riesz representation theorem we can identify H* with H. Therefore the definition of rigged Hilbert space is in terms of a sandwich:

\Phi \subseteq H \subseteq \Phi^*.

The most significant examples are for which Φ is a nuclear space; this comment is an abstract expression of the idea that Φ consists of test functions and Φ* of the corresponding distributions.

Formal definition (Gelfand triple)

A rigged Hilbert space is a pair (H,Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous.

Identifying H with its dual space H*, the adjoint to i is the map

i^*:H=H^*\to\Phi^*.

The duality pairing between Φ and Φ* has to be compatible with the inner product on H, in the sense that:

\langle u, v\rangle_{\Phi\times\Phi^*} = (u, v)_H

whenever u\in\Phi\subset H and v \in H=H^* \subset \Phi^*.

The specific triple  (\Phi,\,\,H,\,\,\Phi^*) is often named the "Gelfand triple" (after the mathematician Israel Gelfand).

Note that even though Φ is isomorphic to Φ* if Φ is a Hilbert space in its own right, this isomorphism is not the same as the composition of the inclusion i with its adjoint i*

i^* i:\Phi\subset H=H^*\to\Phi^*.

References

  • J.-P. Antoine, Quantum Mechanics Beyond Hilbert Space (1996), appearing in Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, Arno Bohm, Heinz-Dietrich Doebner, Piotr Kielanowski, eds., Springer-Verlag, ISBN 3-540-64305-2. (Provides a survey overview.)
  • Jean Dieudonné, Éléments d'analyse VII (1978). (See paragraphs 23.8 and 23.32)
  • I. M. Gelfand and N. J. Vilenkin. Generalized Functions, vol. 4: Some Applications of Harmonic Analysis. Rigged Hilbert Spaces. Academic Press, New York, 1964.
  • R. de la Madrid, "The role of the rigged Hilbert space in Quantum Mechanics," Eur. J. Phys. 26, 287 (2005); quant-ph/0502053.
  • K. Maurin, Generalized Eigenfunction Expansions and Unitary Representations of Topological Groups, Polish Scientific Publishers, Warsaw, 1968.
  • Minlos, R.A. (2001), "Rigged Hilbert space", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/r/r082340.htm 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Nuclear space — In mathematics, a nuclear space is a topological vector space with many of the good properties of finite dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector… …   Wikipedia

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • Bra-ket notation — Quantum mechanics Uncertainty principle …   Wikipedia

  • Self-adjoint operator — In mathematics, on a finite dimensional inner product space, a self adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose.… …   Wikipedia

  • Mathematical formulation of quantum mechanics — Quantum mechanics Uncertainty principle …   Wikipedia

  • Quantum decoherence — Quantum mechanics Uncertainty principle …   Wikipedia

  • Weak topology — This article discusses the weak topology on a normed vector space. For the weak topology induced by a family of maps see initial topology. For the weak topology generated by a cover of a space see coherent topology. In mathematics, weak topology… …   Wikipedia

  • Observable — This article is about observables in physics. For the use of the term observable in control theory, see Observability. In physics, particularly in quantum physics, a system observable is a property of the system state that can be determined by… …   Wikipedia

  • List of functional analysis topics — This is a list of functional analysis topics, by Wikipedia page. Contents 1 Hilbert space 2 Functional analysis, classic results 3 Operator theory 4 Banach space examples …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”