Lie group decomposition

Lie group decomposition

In mathematics, Lie group decompositions are used to analyse the structure of Lie groups and associated objects, by showing how they are built up out of subgroups. They are essential technical tools in the representation theory of Lie groups and Lie algebras; they can also be used to study the algebraic topology of such groups and associated homogeneous spaces. Since the use of Lie group methods became one of the standard techniques in twentieth century mathematics, many phenomena can now be referred back to decompositions.

The same ideas are often applied to Lie groups, Lie algebras, algebraic groups and p-adic number analogues, making it harder to summarise the facts into a unified theory.

List of decompositions

* The Bruhat decomposition "G" = "BWB" of a semisimple algebraic group into double cosets of a Borel subgroup can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as the product of an upper triangular matrix with a lower triangular matrix—but with exceptional cases. It is related to the Schubert cell decomposition of Grassmannians: see Weyl group for more details.
*The Cartan decomposition writes a semisimple real Lie algebra as the sum of eigenspaces of a Cartan involution.
* The Iwasawa decomposition "G" = "KAN" of a semisimple group "G" as the product of compact, abelian, and nilpotent subgroups generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (a consequence of Gram-Schmidt orthogonalization).
*The Langlands decomposition "P" = "MAN" writes a parabolic subgroup "P" of a Lie group as the product of semisimple, abelian, and nilpotent subgroups.
* The Levi decomposition writes a finite dimensional Lie algebra as a semidirect product of a normal solvable subalgebra by a semisimple subalgebra.
*The Polar decomposition "G" = "KAK" writes a semisimple Lie group "G" in terms of a maximal compact subgroup "K" and an abelian subgroup "A".


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Decomposition (disambiguation) — Decomposition may refer to the following: Decomposition, biological process through which organic material is reduced Chemical decomposition or analysis, in chemistry, is the fragmentation of a chemical compound into elements or smaller compounds …   Wikipedia

  • Lie algebra — In mathematics, a Lie algebra is an algebraic structure whose main use is in studying geometric objects such as Lie groups and differentiable manifolds. Lie algebras were introduced to study the concept of infinitesimal transformations. The term… …   Wikipedia

  • Lie algebra cohomology — In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was defined by Chevalley and Eilenberg (1948) in order to give an algebraic construction of the cohomology of the underlying topological spaces of compact Lie …   Wikipedia

  • Lie sphere geometry — is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [The definitive modern textbook on Lie sphere geometry is Harvnb|Cecil|1992 …   Wikipedia

  • Real form (Lie theory) — Lie groups …   Wikipedia

  • General linear group — Group theory Group theory …   Wikipedia

  • Lorentz group — Group theory Group theory …   Wikipedia

  • Cartan decomposition — The Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition of matrices. Cartan involutions on Lie …   Wikipedia

  • Levi decomposition — In Lie theory and representation theory, the Levi decomposition, discovered by Eugenio Elia Levi (1906), states that any finite dimensional real Lie algebra g is (as a vector space) the direct sum of two significant structural parts; namely,… …   Wikipedia

  • Quantum group — In mathematics and theoretical physics, quantum groups are certain noncommutative algebras that first appeared in the theory of quantum integrable systems, and which were then formalized by Vladimir Drinfel d and Michio Jimbo. There is no single …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”