Chiral knot

Chiral knot

In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image. An oriented knot that is equivalent to its mirror image is an amphichiral knot, also called an achiral knot or amphicheiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible.

Contents

Background

The chirality of certain knots was long suspected, and was proven by Max Dehn in 1914. P. G. Tait conjectured that all amphichiral knots had even crossing number, but a counterexample was found by Morwen Thistlethwaite et al. in 1998.[1] However, Tait's conjecture was proven true for prime, alternating knots.[2]

Number of knots of each type of chirality for each crossing number
Number of crossings 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OEIS sequence
Chiral knots 1 0 2 2 7 16 49 152 552 2118 9988 46698 253292 1387166 N/A
Reversible knots 1 0 2 2 7 16 47 125 365 1015 3069 8813 26712 78717 A051769
Fully chiral knots 0 0 0 0 0 0 2 27 187 1103 6919 37885 226580 1308449 A051766
Amphichiral knots 0 1 0 1 0 5 0 13 0 58 0 274 1 1539 A052401
Positive Amphichiral knots 0 0 0 0 0 0 0 0 0 1 0 6 0 65 A051767
Negative Amphichiral knots 0 0 0 0 0 1 0 6 0 40 0 227 1 1361 A051768
Fully Amphichiral knots 0 1 0 1 0 4 0 7 0 17 0 41 0 113 A052400

Chiral knot

The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All torus knots are chiral. The Alexander polynomial cannot detect the chirality of a knot, but the Jones polynomial can in some cases; if Vk(q) ≠ Vk(q−1), then the knot is chiral, however the converse is not true. The HOMFLY polynomial is even better at detecting chirality, but no knot invariant is known which can fully detect chirality.[3]

Reversible knot

A chiral knot that is invertible is classified as a reversible knot.[4]

Fully chiral knot

If a knot is not equivalent to its inverse or its mirror image, it is a fully chiral knot.[4]

Amphichiral knot

The figure eight knot is the simplest amphichiral knot.

An amphichiral knot is one which has an orientation-reversing self-homeomorphism of the 3-sphere, α, fixing the knot set-wise. All amphichiral alternating knots have even crossing number. The only known amphichiral knot with odd crossing number is a 15-crossing knot discovered by Hoste et al.[2]

Fully amphichiral

If a knot is isotopic to both its reverse and its mirror image, it is fully amphichiral. The simplest knot with this property is the figure eight knot.

Positive amphichiral

If the self-homeomorphism, α, preserves the orientation of the knot, it is said to be positive amphichiral. This is equivalent to the knot being isotopic to its mirror. No knots with crossing number smaller than twelve are positive amphichiral.[4]

Negative amphichiral

The first negative amphichiral knot.

If the self-homeomorphism, α, reverses the orientation of the knot, it is said to be negative amphichiral. This is equivalent to the knot being isotopic to the reverse of its mirror image. The knot with this property that has the fewest crossings is the knot 817.[4]

References

See also


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Knot theory — A three dimensional depiction of a thickened trefoil knot, the simplest non trivial knot …   Wikipedia

  • List of knot theory topics — Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician s knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical… …   Wikipedia

  • History of knot theory — For thousands of years, knots have been used for basic purposes such as recording information, fastening and tying objects together. Over time people realized that different knots were better at different tasks, such as climbing or sailing. Knots …   Wikipedia

  • Torus knot — In knot theory, a torus knot is a special kind of knot which lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of… …   Wikipedia

  • Trefoil knot — In knot theory, the trefoil knot is the simplest nontrivial knot. It can be obtained by joining the loose ends of an overhand knot. It can be described as a (2,3) torus knot, and is the closure of the 2 stranded braid σ1³. It is also the… …   Wikipedia

  • Molecular knot — Crystal structure of a molecular trefoil knot with two copper(I) templating ions bound within it reported by Sauvage and coworkers in Recl. Trav. Chim. Pay. B., 1993, 427 428 …   Wikipedia

  • Chiralité — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. La chiralité (du grec ch[e]ir : main) est une importante propriété d’asymétrie dans diverses branches de la science. Un objet ou un système est… …   Wikipédia en Français

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Chirality — For other uses, see Chirality (disambiguation). Two enantiomers of a generic amino acid Chirality, pronounced //kaɪˈrælɪtiː// is a property of asymmetry important in several branches of science. The word chirality is derived from the …   Wikipedia

  • Chirality (mathematics) — In geometry, a figure is chiral (and said to have chirality) if it is not identical to its mirror image, or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. For example, a right shoe is different… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”