Galileo's paradox

Galileo's paradox

Galileo's paradox is a demonstration of one of the surprising properties of infinite sets.

In his final scientific work, the "Two New Sciences", Galileo made two apparently contradictory statements about the positive whole numbers. First, some numbers are perfect squares (i.e., the square of some integer, in the following just called a "square"), while others are not; therefore, all the numbers, including both squares and non-squares, must be more numerous than just the squares. And yet, for every square there is exactly one number that is its square root, and for every number there is exactly one square; hence, there cannot be more of one than of the other. (This is an early use, though not the first, of a proof by one-to-one correspondence of infinite sets.)

Galileo concluded that the ideas of less, equal, and greater applied only to finite sets, and did not make sense when applied to infinite sets. In the nineteenth century, Cantor, using the same methods, showed that while Galileo's result was correct as applied to the whole numbers and even the rational numbers, the general conclusion did not follow: some infinite sets are larger than others, in that they cannot be put into one-to-one correspondence.

Galileo on infinite sets

The relevant section of "Two New Sciences" is excerpted below:Quotation|

: "Simplicio": Here a difficulty presents itself which appears to me insoluble. Since it is clear that we may have one line greater than another, each containing an infinite number of points, we are forced to admit that, within one and the same class, we may have something greater than infinity, because the infinity of points in the long line is greater than the infinity of points in the short line. This assigning to an infinite quantity a value greater than infinity is quite beyond my comprehension.

: "Salviati": This is one of the difficulties which arise when we attempt, with our finite minds, to discuss the infinite, assigning to it those properties which we give to the finite and limited; but this I think is wrong, for we cannot speak of infinite quantities as being the one greater or less than or equal to another. To prove this I have in mind an argument which, for the sake of clearness, I shall put in the form of questions to Simplicio who raised this difficulty.

: I take it for granted that you know which of the numbers are squares and which are not.

: "Simplicio": I am quite aware that a squared number is one which results from the multiplication of another number by itself; this 4, 9, etc., are squared numbers which come from multiplying 2, 3, etc., by themselves.

: "Salviati": Very well; and you also know that just as the products are called squares so the factors are called sides or roots; while on the other hand those numbers which do not consist of two equal factors are not squares. Therefore if I assert that all numbers, including both squares and non-squares, are more than the squares alone, I shall speak the truth, shall I not?

: "Simplicio": Most certainly.

: "Salviati": If I should ask further how many squares there are one might reply truly that there are as many as the corresponding number of roots, since every square has its own root and every root its own square, while no square has more than one root and no root more than one square.

: "Simplicio": Precisely so.

: "Salviati": But if I inquire how many roots there are, it cannot be denied that there are as many as the numbers because every number is the root of some square. This being granted, we must say that there are as many squares as there are numbers because they are just as numerous as their roots, and all the numbers are roots. Yet at the outset we said that there are many more numbers than squares, since the larger portion of them are not squares. Not only so, but the proportionate number of squares diminishes as we pass to larger numbers, Thus up to 100 we have 10 squares, that is, the squares constitute 1/10 part of all the numbers; up to 10000, we find only 1/100 part to be squares; and up to a million only 1/1000 part; on the other hand in an infinite number, if one could conceive of such a thing, he would be forced to admit that there are as many squares as there are numbers taken all together.

: "Sagredo": What then must one conclude under these circumstances?

: "Salviati": So far as I see we can only infer that the totality of all numbers is infinite, that the number of squares is infinite, and that the number of their roots is infinite; neither is the number of squares less than the totality of all the numbers, nor the latter greater than the former; and finally the attributes "equal," "greater," and "less," are not applicable to infinite, but only to finite, quantities. When therefore Simplicio introduces several lines of different lengths and asks me how it is possible that the longer ones do not contain more points than the shorter, I answer him that one line does not contain more or less or just as many points as another, but that each line contains an infinite number. |Galileo|Two New Sciences


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Galileo Galilei — For other uses of Galileo , see Galileo (disambiguation). For other uses of Galileo Galilei , see Galileo Galilei (disambiguation) …   Wikipedia

  • List of paradoxes — This is a list of paradoxes, grouped thematically. Note that many of the listed paradoxes have a clear resolution see Quine s Classification of Paradoxes.Logical, non mathematical* Paradox of entailment: Inconsistent premises always make an… …   Wikipedia

  • infinity — /in fin i tee/, n., pl. infinities. 1. the quality or state of being infinite. 2. something that is infinite. 3. infinite space, time, or quantity. 4. an infinite extent, amount, or number. 5. an indefinitely great amount or number. 6. Math. a.… …   Universalium

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • Case study — This article is about the method of doing research. For the teaching method, see Case method. For the method of teaching law, see Casebook method. A case study is an intensive analysis of an individual unit (e.g., a person, group, or event)… …   Wikipedia

  • Time in physics — In physics, the treatment of time is a central issue. It has been treated as a question of geometry. One can measure time and treat it as a geometrical dimension, such as length, and perform mathematical operations on it. It is a scalar quantity… …   Wikipedia

  • Science and mathematics from the Renaissance to Descartes — George Molland Early in the nineteenth century John Playfair wrote for the Encyclopaedia Britannica a long article entitled ‘Dissertation; exhibiting a General View of the Progress of Mathematics and Physical Science, since the Revival of Letters …   History of philosophy

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • Thought experiment — A thought experiment (from the German Gedankenexperiment ) is a proposal for an experiment that would test a hypothesis or theory but cannot actually be performed due to practical limitations; instead its purpose is to explore the potential… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”