Latent class model

Latent class model

In statistics, a latent class model (LCM) relates a set of observed discrete multivariate variables to a set of latent variables. It is a type of latent variable model. It is called a latent class model because the latent variable is discrete. A class is characterized by a pattern of conditional probabilities that indicate the chance that variables take on certain values.

Latent Class Analysis (LCA) is a subset of structural equation modeling, used to find groups or subtypes of cases in multivariate categorical data. These subtypes are called "latent classes".[1]

Confronted with a situation as follows, a researcher might choose to use LCA to understand the data: Imagine that symptoms a-d have been measured in a range of patients with diseases X Y and Z, and that disease X is associated with the presence of symptoms a, b, and c, disease Y with symptoms b, c, d, and disease Z with symptoms a, c and d.

The LCA will attempt to detect the presence of latent classes (the disease entities), creating patterns of association in the symptoms. As in factor analysis, the LCA can also be used to classify case according to their maximum likelihood class membership.[1]

Because the criterion for solving the LCA is to achieve latent classes within which there is no longer any association of one symptom with another (because the class is the disease which causes their association, and the set of diseases a patient has (or class a case is a member of) causes the symptom association, the symptoms will be "conditionally independent", i.e., conditional on class membership, they are no longer related.[1]

Contents

Related methods

As in much of statistics, there are a large number of methods with distinct names and uses, which share a common relationship. Cluster analysis is, like LCA, used to discover taxon-like groups of cases in data. Multivariate mixture estimation (MME) is applicable to continuous data, and assumes that such data arise from a mixture of distributions: imagine a set of heights arising from a mixture of men and women. If a Multivariate mixture estimation is constrained so that measures must be uncorrelated within each distribution it termed latent profile analysis. Modified to handle discrete data, this constrained analysis is known as LCA. Discrete latent trait models further constrain the classes to formed from segments of a single dimension: essentially allocating members to classes on that dimension: an example would be assigning cases to social classes on a dimension of ability or merit.

As a practical instance, the variables could be multiple choice items of a political questionnaire. The data in this case consists of a N-way contingency table with answers to the items for a number of respondents. In this example, the latent variable refers to political opinion and the latent classes to political groups. Given group membership, the conditional probabilities specify the chance certain answers are chosen.

Within each latent class, the observed variables are statistically independent. This is an important aspect. Usually the observed variables are statistically dependent. By introducing the latent variable, independence is restored in the sense that within classes variables are independent (local independence). We then say that the association between the observed variables is explained by the classes of the latent variable (McCutcheon, 1987).

In one form the latent class model is written as

p_{i_1, i_2, \ldots, i_N} \approx \sum_t^T p_t \, \prod_n^N p^n_{i_n,
t},

where T is the number of latent classes and pt are the so-called recruitment or unconditional probabilities that should sum to one. p^n_{i_n, t} are the marginal or conditional probabilities.

For a two-way latent class model the form is

p_{ij} \approx \sum_t^T p_t \, p_{it} \, p_{jt}.

This two-way model is related to probabilistic latent semantic analysis and non-negative matrix factorization.

Software

  • R package poLCA for Latent Class Analysis and Latent Class Regression Modeling
  • PROC LCA & PROC LTA Free SAS Procedures for Latent Class Analysis and Latent Transition Analysis
  • Mplus
  • Lem
  • R package e1071 contains LCA

External links

  • The Methodology Center, Latent Class Analysis, a research center at Penn State, free software, FAQ
  • John Uebersax, Latent Class Analysis, 2006. A web-site with bibliography, software, links and FAQ for latent class analysis

References

  1. ^ a b c Lazarsfeld P.F. and Henry, N.W. (1968)Latent structure analysis. Boston: Houghton Mifflin
  • Linda M. Collins, Stephanie T. Lanza (2010). Latent class and latent transition analysis for the social, behavioral, and health sciences. New York: Wiley. ISBN 9780470228395. 
  • A. L. McCutcheon (1987). Latent class analysis. Quantitative Applications in the Social Sciences Series No. 64.. Thousand Oaks, California: Sage Publications. ISBN 0521594510. 
  • Leo A. Goodman (1974). "Exploratory latent structure analysis using both identifiable and unidentifiable models". Biometrika 61 (2): 215–231. doi:10.1093/biomet/61.2.215. 
  • Paul F. Lazarsfeld, Neil W. Henry (1968). Latent Structure Analysis. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Latent variable model — A latent variable model is a statistical model that relates a set of variables (so called manifest variables ) to set of latent variables. It is assumed that 1) the responses on the indicators or manifest variables are the result of an individual …   Wikipedia

  • Probabilistic latent semantic analysis — (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two mode and co occurrence data. PLSA evolved from Latent semantic analysis, adding a… …   Wikipedia

  • Rasch model — Rasch models are used for analysing data from assessments to measure things such as abilities, attitudes, and personality traits. For example, they may be used to estimate a student s reading ability from answers to questions on a reading… …   Wikipedia

  • Mixture model — See also: Mixture distribution In statistics, a mixture model is a probabilistic model for representing the presence of sub populations within an overall population, without requiring that an observed data set should identify the sub population… …   Wikipedia

  • Manifest and latent functions and dysfunctions — Sociology …   Wikipedia

  • Bag of words model in computer vision — This is an article introducing the Bag of words model (BoW) in computer vision, especially for object categorization. From now, the BoW model refers to the BoW model in computer vision unless explicitly declared.Before introducing the BoW model,… …   Wikipedia

  • First-hitting-time model — In statistics, first hitting time models are a sub class of survival models. The first hitting time, also called first passage time, of a set A with respect to an instance of a stochastic process is the time until the stochastic process first… …   Wikipedia

  • Global climate model — AGCM redirects here. For Italian competition regulator, see Autorità Garante della Concorrenza e del Mercato. Climate models are systems of differential equations based on the basic laws of physics, fluid motion, and chemistry. To “run” a model,… …   Wikipedia

  • Vector space model — (or term vector model ) is an algebraic model for representing text documents (and any objects, in general) as vectors of identifiers, such as, for example, index terms. It is used in information filtering, information retrieval, indexing and… …   Wikipedia

  • Multilevel model — Multilevel models (also hierarchical linear models, nested models, mixed models, random coefficient, random effects models, random parameter models, or split plot designs) are statistical models of parameters that vary at more than one level.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”