- Local independence
Local independence is the underlying assumption of
latent variable model s. The observed items are independent of each other given an individual score on the latent variable(s). This means that the latent variable explains why the observed items are related to another. This can be explained by the following example.Example
Local independence can be explained by an example of Lazarsfeld and Henry (1968). Suppose that a sample of 1000 people is asked whether they read journal A and B. Their responses were:
Read A
Did not read A
Total
Read B
260
140
400
Did not read B
240
360
600
Total
500
500
1000
you can easily see that the two variables (reading A and reading B) are strongly related, and thus dependent of each other. Readers of A tend to read B more often (52%) than non readers of A (28%). When reading A and B is independent, than P(A&B) = P(A)xP(B)
But 260/1000 isn't 400/1000 * 500/1000.
Thus reading A and B is dependent of each other.
But when we also look to the education level of these people we get these tables:
High education
Read A
Did not read A
Total
Low education
Read A
Did not read A
Total
Read B
240
60
300
Read B
20
80
100
Did not read B
160
40
200
Did not read B
80
320
400
Total
400
100
500
Total
100
400
500
And again if reading A and B are independent, than P(A&B) = P(A)xP(B) for each education level.
240/500 = 300/500*400/500 and 20/500 = 100/500*100/500.
Thus when we look separate to the high and low educated people, there is no relationship between the two journals. That is, reading A and B are independent within educational level. The educational level 'explains' the difference in reading A and B.
Latent variable
In latent variable models the latent variable can be seen as education in the example. This means that the manifest variables are locally independent given the latent variable(s). This assumption is also necessary to identify the latent variables.
References
Lazarsfeld, P.F., and Henry, N.W. , 1968. "Latent Structure analysis." Boston: Houghton Mill.
Wikimedia Foundation. 2010.