Lauricella hypergeometric series

Lauricella hypergeometric series

In 1893 G. Lauricella defined and studied four hypergeometric series of three variables. They are:

:F_A^{(3)}(a,b_1,b_2,b_3,c_1,c_2,c_3;x_1,x_2,x_3) = sum_{i_1,i_2,i_3=0}^{infty} frac{(a)_{i_1+i_2+i_3} (b_1)_{i_1} (b_2)_{i_2} (b_3)_{i_3 {(c_1)_{i_1} (c_2)_{i_2} (c_3)_{i_3}i_1! i_2! i_3!} x_1^{i_1}x_2^{i_2}x_3^{i_3}

:F_B^{(3)}(a_1,a_2,a_3,b_1,b_2,b_3,c;x_1,x_2,x_3) = sum_{i_1,i_2,i_3=0}^{infty} frac{(a_1)_{i_1} (a_2)_{i_2} (a_3)_{i_3} (b_1)_{i_1} (b_2)_{i_2} (b_3)_{i_3 {(c)_{i_1+i_2+i_3} i_1! i_2! i_3!} x_1^{i_1}x_2^{i_2}x_3^{i_3}

:F_C^{(3)}(a,b,c_1,c_2,c_3;x_1,x_2,x_3) = sum_{i_1,i_2,i_3=0}^{infty} frac{(a)_{i_1+i_2+i_3} (b)_{i_1+i_2+i_3 {(c_1)_{i_1} (c_2)_{i_2} (c_3)_{i_3}i_1! i_2! i_3!} x_1^{i_1}x_2^{i_2}x_3^{i_3}

:F_D^{(3)}(a,b_1,b_2,b_3,c;x_1,x_2,x_3) = sum_{i_1,i_2,i_3=0}^{infty} frac{(a)_{i_1+i_2+i_3} (b_1)_{i_1} (b_2)_{i_2} (b_3)_{i_3 {(c)_{i_1+i_2+i_3} i_1! i_2! i_3!} x_1^{i_1}x_2^{i_2}x_3^{i_3}

where the Pochhammer symbol (a)_{i} indicates the i-th rising factorial power of a, i.e. :(a)_{i} = a (a+1) dots (a+i-1). , Lauricella also indicated the existence of ten other hypergeometric functions of three variables. These were named and studied by Saran in 1954. There are therefore a total of 14 Lauricella-Saran hypergeometric functions.

Generalization to n variables

These functions can be straightforwardly extended to n variables. One writes for example

:F_A^{(n)}(a,b_1,ldots,b_n,c_1,ldots,c_n;x_1,ldots,x_n).

When n=2 the Lauricella functions correspond to the Appell hypergeometric series of two variables as follows:

:F_Aequiv F_2 ,, F_Bequiv F_3 ,, F_Cequiv F_4 ,, F_Dequiv F_1.

When n=1 all four functions reduce to the Gauss hypergeometric function:,_2F_1(a;b;c;x).

References

* G. Lauricella: "Sulle funzioni ipergeometriche a più variabili", Rend. Circ. Mat. Palermo, 7, p111-158 (1893).
* S. Saran: "Hypergeometric Functions of Three Variables", Ganita, 5, No.1, p77-91 (1954).


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Hypergeometric — can refer to various related mathematical topics:*Hypergeometric series, p F q , a power series **Confluent hypergeometric function, 1 F 1, also known as the Kummer function **Euler hypergeometric integral, an integral representation of 2 F 1… …   Wikipedia

  • Giuseppe Lauricella — (Agrigente, 1867 Catane, 1913) est un mathématicien sicilien connu pour ses contributions à la théorie des équations intégrales et à la théorie mathématique de l’élasticité. Sommaire 1 Biographie 2 Contributions 3 …   Wikipédia en Français

  • Giuseppe Lauricella — (1867 1913) was an Italian mathematician who is remembered today for his contributions to analysis and the theory of elasticity.Born in Agrigento (Sicily), he studied at the University of Pisa, where his professors included Luigi Bianchi, Ulisse… …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • Интеграл Меллина — Барнса (Mellin Barnes integral) или интеграл Барнса (Barnes integral) в математике контурный интеграл от функции, содержащей произведение гамма функций. Интегралы такого типа тесно связаны с обобщёнными гипергеометрическими функциями. Они были… …   Википедия

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/1940328 Do a right-click on the link above
and select “Copy Link”