Sierpiński carpet

Sierpiński carpet

The Sierpinski carpet is a plane fractal first described by Wacław Sierpiński in 1916. The carpet is a generalization of the Cantor set to two dimensions (another is Cantor dust). Sierpiński demonstrated that this fractal is a universal curve, in that any possible one-dimensional graph, projected onto the two-dimensional plane, is homeomorphic to a subset of the Sierpinski carpet. For curves that cannot be drawn on a 2D surface without self-intersections, the corresponding universal curve is the Menger sponge, a higher-dimensional generalization.

The technique can be applied to repetitive tiling arrangement; triangle, square, hexagon being the simplest. It would seem impossible to apply it to other than rep-tile arrangements.

Construction

The construction of the Sierpinski carpet begins with a square. The square is cut into 9 congruent subsquares in a 3-by-3 grid, and the central subsquare is removed. The same procedure is then applied recursively to the remaining 8 subsquares, "ad infinitum". The Hausdorff dimension of the carpet is log 8/log 3 ≈ 1.8928.

The area of the carpet is zero (in standard Lebesgue measure).

Brownian motion on the Sierpinski carpet

The topic of Brownian motion on the Sierpinski carpet has attracted interest in recent years. Martin Barlow and Richard Bass have shown that a random walk on the Sierpinski carpet diffuses at a slower rate than an unrestricted random walk in the plane. The latter reaches a mean distance proportional to "n"1/2 after "n" steps, but the random walk on the discrete Sierpinski carpet reaches only a mean distance proportional to "n"1/β for some β > 2. They also showed that this random walk satisfies stronger large deviation inequalities (so called "sub-gaussian inequalities") and that it satisfies the elliptic Harnack inequality without satisfying the parabolic one. The existence of such an example was an open problem for many years.

Computer program

The following Java applet draws a Sierpinski carpet by means of a method that recursively calls itself:import java.awt.*;import java.applet.*; public class SierpinskiCarpet extends Applet { private Graphics g=null; private int d0=729; // 3^6 public void init() { g=getGraphics(); resize(d0,d0); } public void paint(Graphics g) { // start recursion: drawSierpinskiCarpet ( 0, 0, getWidth(), getHeight() ); } private void drawSierpinskiCarpet(int xTL, int yTL, int width, int height) { if (width>2 && height>2) { int w=width/3, h=height/3; g.fillRect ( xTL+w, yTL+h, w, h ); for (int k=0;k<9;k++) if (k!=4) { int i=k/3, j=k%3; drawSierpinskiCarpet ( xTL+i*w, yTL+j*h, w, h ); // recursion } }

See also

* List of fractals by Hausdorff dimension
* Sierpinski triangle
* Hawaiian earring

External links

* [http://www.cut-the-knot.org/Curriculum/Geometry/SqStrFSM.shtml Variations on the Theme of Tremas II]
* [http://www.evilmadscientist.com/article.php/fractalcookies Sierpiński Cookies]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Sierpiński-Teppich — Der Sierpinski Teppich ist ein Fraktal, das auf den polnischen Mathematiker Wacław Sierpiński zurückgeht. Aus einem Quadrat wird in der Mitte ein Neuntel der Fläche entfernt. Aus den von dem Quadrat um das Loch verbliebenen acht quadratischen… …   Deutsch Wikipedia

  • Sierpinski-Teppich — Der Sierpinski Teppich ist ein Fraktal, das auf den polnischen Mathematiker Wacław Sierpiński zurückgeht. Aus einem Quadrat wird in der Mitte ein Neuntel der Fläche entfernt. Aus den um das Loch verbliebenen acht quadratischen Feldern wird… …   Deutsch Wikipedia

  • Sierpiński triangle — The Sierpiński triangle, also called the Sierpiński gasket or the Sierpiński Sieve, is a fractal named after Wacław Sierpiński who described it in 1915. [. W. Sierpiński, Sur une courbe dont tout point est un point de ramification ,C. R. Acad.… …   Wikipedia

  • Sierpiński, Wacław — ▪ Polish mathematician born March 14, 1882, Warsaw, Russian Empire [now in Poland] died October 21, 1969, Warsaw  leading figure in point set topology and one of the founding fathers of the Polish school of mathematics, which flourished between… …   Universalium

  • Alfombra de Sierpinski — La alfombra de Sierpinski es un conjunto fractal descrito por primera vez por Wacław Sierpiński en 1916.[1] Constituye una generalización a dos dimensiones del conjunto de Cantor. Comparte con él muchas propiedades: también es un conjunto… …   Wikipedia Español

  • Tapis de Sierpiński — Pour les articles homonymes, voir Tapis (homonymie). Tapis de Sierpiński Le tapis de Sierpiński (1916), du nom de Wacław Sierpiński, est une …   Wikipédia en Français

  • Wacław Sierpiński — Wacław Franciszek Sierpiński (March 14 1882 October 21 1969) (pronounced|ˈvaʦwaf fraɲˈʨiʂɛk ɕɛrˈpʲiɲskʲi), a Polish mathematician, was born and died in Warsaw. He was known for outstanding contributions to set theory (research on the axiom of… …   Wikipedia

  • Mengerscher Schwamm — Der Menger Schwamm (nach Karl Menger benannt) gehört wie das Sierpinski Dreieck und die Koch Kurve zu den Objekten der fraktalen Geometrie. Der Mengersche Schwamm ist ein dreidimensionales Analogon der Cantor Menge oder des Sierpinski Teppichs:… …   Deutsch Wikipedia

  • Menger sponge — An illustration of M4, the fourth iteration of the construction process. In mathematics, the Menger sponge is a fractal curve. It is a universal curve, in that it has topological dimension one, and any other curve (more precisely: any compact… …   Wikipedia

  • Fractal — A fractal is generally a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced size copy of the whole, [cite book last = Mandelbrot first = B.B. title = The Fractal Geometry of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”