Rosenbrock function

Rosenbrock function

In mathematical optimization, the Rosenbrock function is a non-convex function used as a test problem for optimization algorithms. It is also known as Rosenbrock's valley or Rosenbrock's banana function.

This function is often used to test performance of optimization algorithms. The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial, however to converge to the global minimum is difficult.

It is defined by

: f(x, y) = (1-x)^2 + 100(y-x^2)^2 .quad

It has a global minimum at (x, y)=(1, 1) where f(x, y)=0. A different coefficient of the second term is sometimes given, but this does not affect the position of the global minimum.

A common multidimensional extension is

: f(x) = sum_{i=1}^{N-1} left [ (1-x_i)^2+ 100 (x_{i+1} - x_i^2 )^2 ight] quad forall xinmathbb{R}^N. [cite web |url= http://www.it.lut.fi/ip/evo/functions/node5.html |title=Generalized Rosenbrock's function |accessdate=2008-09-16 |work= |publisher= |date= ]

For N ge 4, the function has at least one local minimum in the neighborhood of (x_1, x_2, dots, x_N) = (-1, 1, dots, 1) inaddition to the trivial global minimum at(x_1, dots, x_N) = (1, dots, 1). [Yun-Wei Shang, Yu-Huang Qiu.A Note on the Extended Rosenbrock Function."Evolutionary Computation" 14, 2006. [http://www.mitpressjournals.org/doi/abs/10.1162/evco.2006.14.1.119] ]

Notes

External links

* [http://www.gnuplot.info/screenshots/figs/pm3d-Rosenbrock.pngRosenbrock function plot in 3D]
* [http://www.rpi.edu/~vanfrl/rosenbrock_minim.gifMinimization of Rosenbrock's function] using the BFGS, DFP, and Steepest Descent Algorithms 2D plot
* [http://demonstrations.wolfram.com/MinimizingTheRosenbrockFunction/ Minimizing the Rosenbrock Function] by Michael Croucher, The Wolfram Demonstrations Project.
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Функция Розенброка — График функции Розенброка для двух переменных. Функция Розенброка (англ. Rosenbrock function, Rosenbrock s valley, Rosenbrock s banana fu …   Википедия

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • Gradient descent — For the analytical method called steepest descent see Method of steepest descent. Gradient descent is an optimization algorithm. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Metropolis–Hastings algorithm — The Proposal distribution Q proposes the next point that the random walk might move to. In mathematics and physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo method for obtaining a sequence of random samples from a… …   Wikipedia

  • Метод Нелдера — Мида — Последовательные симплексы в методе Нелдера Мида для функции Розенброка (англ.) (вв …   Википедия

  • Matplotlib — Пример работы matplotlib Тип библиотека языка Python …   Википедия

  • matplotlib — Original author(s) John Hunter Stable release 1.1.0 / 6 October 2011; 46 days ago (20 …   Wikipedia

  • Nelder–Mead method — Nelder–Mead simplex search over the Rosenbrock banana function (above) and Himmelblau s function (below) See simplex algorithm for Dantzig s algorithm for the problem of linear opti …   Wikipedia

  • Differential evolution — In computer science, differential evolution (DE) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”