Particle number operator

Particle number operator

In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.

The number operator acts on Fock space. Given a Fock state |\Psi\rangle_\nucomposed of single-particle basis states |\phi_i\rangle:

|\Psi\rangle_\nu=|\phi_1,\phi_2,\cdots,\phi_n\rangle_\nu

with creation and annihilation operators a^{\dagger}(\phi_i) and a(\phi_i)\, we define the number operator \hat{N_i} \ \stackrel{\mathrm{def}}{=}\ a^{\dagger}(\phi_i)a(\phi_i) and we have:

\hat{N_i}|\Psi\rangle_\nu=N_i|\Psi\rangle_\nu

where Ni is the number of particles in state |\phi_i\rangle. The above equality can be proven by noting that

\begin{matrix}
a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu
&=& \sqrt{N_i}  |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\
a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu  &=& \sqrt{N_i}  |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i},\phi_{i+1},\cdots,\phi_n\rangle_\nu 
\end{matrix}

then

\begin{matrix}
\hat{N_i}|\Psi\rangle_\nu = a^{\dagger}(\phi_i)a(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_i,\phi_{i+1},\cdots,\phi_n\rangle_\nu
&=& \sqrt{N_i} a^{\dagger}(\phi_i) |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\ &=& \sqrt{N_i} \sqrt{N_i} |\phi_1,\phi_2,\cdots,\phi_{i-1},\phi_{i},\phi_{i+1},\cdots,\phi_n\rangle_\nu \\&=& N_i|\Psi\rangle_\nu\\
\end{matrix}

See also

References

  • Bruus, Henrik, Flensberg, Karsten. (2004). Many-body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press. ISBN 0-19-856633-6. 
  • Second quantization notes by Fradkin



Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • particle number operator — dalelių skaičiaus operatorius statusas T sritis fizika atitikmenys: angl. particle number operator vok. Teilchenzahloperator, m rus. оператор числа частиц, m pranc. opérateur de nombre de particules, m …   Fizikos terminų žodynas

  • Particle number — Conjugate variables of thermodynamics Pressure Volume (Stress) (Strain) Temperature Entropy Chemical potential Particle number The particle number (or number of particles) of a thermodynamic system …   Wikipedia

  • particle number density operator — dalelių tankio operatorius statusas T sritis fizika atitikmenys: angl. particle number density operator vok. Teilchenanzahldichteoperator, m rus. оператор плотности числа частиц, m pranc. opérateur du nombre volumique de particules, m …   Fizikos terminų žodynas

  • Virtual particle — In physics, a virtual particle is a particle that exists for a limited time and space, introducing uncertainty in their energy and momentum due to the Heisenberg Uncertainty Principle. (Indeed, because energy and momentum in quantum mechanics are …   Wikipedia

  • Particle swarm optimization — (PSO) is a swarm intelligence based algorithm to find a solution to an optimization problem in a search space, or model and predict social behavior in the presence of objectives.OverviewParticle swarm optimization is a stochastic, population… …   Wikipedia

  • Particle in a spherically symmetric potential — In quantum mechanics, the particle in a spherically symmetric potential describes the dynamics of a particle in a potential which has spherical symmetry. The Hamiltonian for such a system has the form:hat{H} = frac{hat{p}^2}{2m 0} + V(r)where m 0 …   Wikipedia

  • Operator product expansion — Contents 1 2D Euclidean quantum field theory 2 General 3 See also 4 External links 2D Euclidean quantum field theory …   Wikipedia

  • Anti-symmetric operator — In quantum mechanics, a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the… …   Wikipedia

  • Wave–particle duality — Quantum mechanics Uncertainty principle …   Wikipedia

  • Magnetic-particle inspection — (MPI) is a non destructive testing (NDT) process for detecting surface and subsurface discontinuities in ferroelectric materials such as iron, nickel, cobalt, and some of their alloys. The process puts a magnetic field into the part. The piece… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”