Microscopic reversibility

Microscopic reversibility

The principle of Microscopic reversibility in physics and chemistry is twofold:

  • First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time (T-symmetry);
  • Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions, elementary transitions or reactions. For these processes, the consequence of the microscopic T-symmetry is:

    Corresponding to every individual process there is a reverse process, and in a state of equilibrium the average rate of every process is equal to the average rate of its reverse process.[1]

Time-reversibility of dynamics

The Newton and the Schrödinger equations in the absence of the macroscopic magnetic fields and in the inertial frame of reference are T-invariant: if X(t) is a solution then X(-t) is also a solution (here X is the vector of all dynamic variables, including all the coordinates of particles for the Newton equations and the wave function in the configuration space for the Schrödinger equation).

There are two sources of the violation of this rule:

  • First, if dynamics depend of a pseudovector like the magnetic field or the rotation angular speed in the rotating frame then the T-symmetry does not hold.
  • Second, in microphysics of weak interaction the T-symmetry may be violated and only the combined CPT symmetry holds.

Macroscopic consequences of the time-reversibility of dynamics

In physics and chemistry, there are two main macroscopic consequences of the time-reversibility of microscopic dynamics: the principle of detailed balance and the Onsager reciprocal relations.

The statistical description of the macroscopic process as an ensemble of the elementary indivisible events (collisions) was invented by L. Boltzmann and formalised in the Boltzmann equation. He discovered that the time-reversibility of the Newtonian dynamics leads to the detailed balance for collision: in equilibrium collisions are equilibrated by their reverse collisions. He used this principle of detailed balance to prove his famous H-theorem in 1872.[2]. Later, the principle of detailed balance was developed and applied by many famous researchers.[3][4]. Nowadays, it is included in most of the textbooks in statistical physics and physical chemistry[5].

The reciprocal relations were discovered in the 19th century by Thomson and Helmholtz for some phenomena but the general theory was proposed by Lars Onsager in 1931[6]. He found also the connection between the reciprocal relations and detailed balance. For the equations of the law of mass action the reciprocal relations appear in the linear approximation near equilibrium as a consequence of the detailed balance conditions.

References

  1. ^ Lewis, G.N. (1925) A new principle of equilibrium, PNAS March 1, 1925 vol. 11 no. 3 179-183.
  2. ^ Boltzmann, L. (1964), Lectures on gas theory, Berkeley, CA, USA: U. of California Press.
  3. ^ Wegscheider, R. (1911) Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme, Monatshefte für Chemie / Chemical Monthly 32(8), 849--906.
  4. ^ Einstein, A. (1916). Strahlungs-Emission und -Absorption nach der Quantentheorie [=Emission and absorption of radiation in quantum theory], Verhandlungen der Deutschen Physikalischen Gesellschaft 18 (13/14). Braunschweig: Vieweg, 318-323.
  5. ^ Tolman, R. C. (1938). The Principles of Statistical Mechanics. Oxford University Press, London, UK.
  6. ^ Onsager, L. (1931), Reciprocal relations in irreversible processes. I, Phys. Rev. 37, 405-426; II 38, 2265-2279

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • microscopic reversibility, principle of — ▪ physics       principle formulated about 1924 by the American scientist Richard C. Tolman that provides a dynamic description of an equilibrium condition. Equilibrium is a state in which no net change in some given property of a physical system …   Universalium

  • Detailed balance — The principle of detailed balance is formulated for kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions): At equilibrium, each elementary process should be equilibrated by its reverse… …   Wikipedia

  • radiation — radiational, adj. /ray dee ay sheuhn/, n. 1. Physics. a. the process in which energy is emitted as particles or waves. b. the complete process in which energy is emitted by one body, transmitted through an intervening medium or space, and… …   Universalium

  • Onsager reciprocal relations — Thermodynamics …   Wikipedia

  • Formule De Boltzmann — En physique statistique, la formule de Boltzmann (1877) définit l entropie microcanonique d un système physique à l équilibre macroscopique, mais laissé libre d évoluer à l échelle microscopique entre Ω micro états différents, par : où kB… …   Wikipédia en Français

  • Formule de Boltzmann — Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l entropie microcanonique d un système physique à l équilibre macroscopique, mais laissé libre d évoluer à l échelle microscopique entre Ω micro… …   Wikipédia en Français

  • Formule de boltzmann — En physique statistique, la formule de Boltzmann (1877) définit l entropie microcanonique d un système physique à l équilibre macroscopique, mais laissé libre d évoluer à l échelle microscopique entre Ω micro états différents, par : où kB… …   Wikipédia en Français

  • Paradoxe de Loschmidt — Théorème H Le théorème H est un théorème démontré par Boltzmann en 1872 dans le cadre de la théorie cinétique des gaz, lorsqu un gaz hors d équilibre vérifie son équation. Selon ce théorème, il existe une certaine grandeur H(t) qui varie de façon …   Wikipédia en Français

  • Paradoxe de la réversibilité — Théorème H Le théorème H est un théorème démontré par Boltzmann en 1872 dans le cadre de la théorie cinétique des gaz, lorsqu un gaz hors d équilibre vérifie son équation. Selon ce théorème, il existe une certaine grandeur H(t) qui varie de façon …   Wikipédia en Français

  • Théorème H — Le théorème H est un théorème démontré par Boltzmann en 1872 dans le cadre de la théorie cinétique des gaz, lorsqu un gaz hors d équilibre vérifie son équation. Selon ce théorème, il existe une certaine grandeur H(t) qui varie de façon monotone… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”