Envelope theorem

Envelope theorem

The envelope theorem is a basic theorem used to solve maximization problems in microeconomics. It may be used to prove Hotelling's lemma, Shephard's lemma, and Roy's identity. The statement of the theorem is:

Consider an arbitrary maximization problem where the objective function (f) depends on some parameter (a):

:M(a) = max_{x} f(x, a),

where the function M(a) gives the maximized value of the objective function (f) as a function of the parameter (a). Now let x (a) be the (arg max) value of x that solves the maximization problem in terms of the parameter (a), i.e. so that M(a) = f(x (a), a). The envelope theorem tells us how M(a) changes as the parameter (a) changes, namely:

:frac{dM(a)}{da} = frac{partial f(x^*, a)}{ partial a} Bigg|_{x^* = x(a)}.

That is, the derivative of M with respect to a is given by the partialderivative of f(x, a) with respect to a, holding x fixed, and then evaluating at the optimal choice (x^*). The vertical bar to the right of the partial derivative denotes that we are to make this evaluation at x^*=x(a).

Envelope theorem in generalized calculus

In the calculus of variations, the envelope theorem relates evolutes to single paths. This was first proved by Jean Gaston Darboux and Ernst Zermelo (1894) and Adolf Kneser (1898). The theorem can be stated as follows:

"When a single-parameter family of external paths from a fixed point "O" has an envelope, the integral from the fixed point to any point "A" on the envelope equals the integral from the fixed point to any second point "B" on the envelope plus the integral along the envelope to the first point on the envelope", "J""OA" = "J""OB" + "J""BA"." ref|Kimball

ee also

*Optimization problem
*Random optimization
*Simplex algorithm
*Topkis's Theorem
*Variational calculus

References

#Kimball, W. S., "Calculus of Variations by Parallel Displacement". London: Butterworth, p. 292, 1952.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Envelope-Theorem — Der Umhüllungssatz oder auch Envelope Theorem ist ein grundlegender Satz der Variationsrechnung, der häufig Anwendung in der Mikroökonomie findet. Er beschreibt, wie sich die Zielfunktion eines parametrisierten Maximierungsproblems bei Änderung… …   Deutsch Wikipedia

  • Maximum theorem — The maximum theorem provides conditions for the continuity of an optimized function and the set of its maximizers as a parameter changes. The statement was first proven by Claude Berge in 1959[1]. The theorem is primarily used in mathematical… …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Comparative statics — In this graph, comparative statics shows an increase in demand causing a rise in price and quantity. Comparing two equilibrium states, comparative statics doesn t describe how the increases actually occur. In economics, comparative statics is the …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Envelopentheorem — Der Umhüllungssatz oder auch Envelope Theorem ist ein grundlegender Satz der Variationsrechnung, der häufig Anwendung in der Mikroökonomie findet. Er beschreibt, wie sich die Zielfunktion eines parametrisierten Maximierungsproblems bei Änderung… …   Deutsch Wikipedia

  • Umhüllungssatz — Der Umhüllungssatz (auch Envelope Theorem oder Einhüllenden Satz) ist ein grundlegender Satz der Variationsrechnung, der häufig Anwendung in der Mikroökonomie findet. Er beschreibt, wie sich die Zielfunktion eines parametrisierten… …   Deutsch Wikipedia

  • Mechanism design — The Stanley Reiter diagram above illustrates a game of mechanism design. The upper left space Θ depicts the type space and the upper right space X the space of outcomes. The social choice function f(θ) maps a type profile to an outcome. In games… …   Wikipedia

  • Hotellings Lemma — ist ebenso wie Shephards Lemma ein Sonderform des Umhüllungssatzes (engl. envelope theorem) in der Mikroökonomie.[1] Benannt ist das Lemma nach dem US amerikanischen Statistiker und Nationalökonomen Harold Hotelling. Hotellings Lemma besagt, dass …   Deutsch Wikipedia

  • Mathematical optimization — For other uses, see Optimization (disambiguation). The maximum of a paraboloid (red dot) In mathematics, computational science, or management science, mathematical optimization (alternatively, optimization or mathematical programming) refers to… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”