- Galvanic cell
The Galvanic cell, named after
Luigi Galvani , consists of two different metals connected by asalt bridge or a porous disk between the individual half-cells. It is also known as avoltaic cell orelectrochemical cell . It should not be confused with theelectrolytic cell .History
In
1780 , Luigi Galvani discovered that when two differentmetal sFact|date=September 2008 (copper and zinc for example) were connected together and then both touched to different parts of a nerve of a frog leg at the same time, they made the leg contract. He called this "animal electricity". TheVoltaic pile invented byAlessandro Volta in the 1800s is similar to the galvanic cell. These discoveries paved the way for electrical batteries.Description
A galvanic cell consists of two
half-cell s. Each half-cell has (1) anelectrode , which in the figure are the plates of Zn (zinc) and Cu (copper); and (2) anelectrolyte , which in the figure are aqueous solutions of ZnSO4 and CuSO4. The metal of a metallic electrode tends to go into solution, thereby releasing positively charged metal ions into the electrolyte, and retaining negatively charged electrons on the electrode. Thus each half-cell has its ownhalf-reaction . For theDaniell cell , depicted in the figure, the Zn atoms have a greater tendency to go into solution than do the Cu atoms. More precisely, the electrons on the Zn electrode have a higher energy than the electrons on the Cu electrode. Because the electrons have negative charge, to give electrons on it a higher energy the Zn electrode must have a more negativeelectrical potential than the Cu electrode. However, in the absence of an external connection between the electrodes, no current can flow.When the electrodes are connected externally (as in the figure, with wire and a lightbulb), the electrons tend to flow from the more negative electrode (Zn) to the more positive electrode (Cu). Because the electrons have negative charge, this produces an electric current that is opposite the electron flow. At the same time, an equal ionic current flows through the electrolyte. For every two electrons that flow from the Zn electrode through the external connection to the Cu electrode, on the electrolyte side a Zn atom must go into solution as a Zn2+ ion, at the same time replacing the two electrons that have left the Zn electrode by the external connection. By definition, the
anode is the electrode whereoxidation (removal of electrons) takes place, so in this galvanic cell the Zn electrode is the anode. Because the Cu has gained two electrons from the external connection, it must release two electrons at the electrolyte side, where a Cu2+ ion plates onto the Cu electrode. By definition, thecathode is the electrode wherereduction (gain of electrons) takes place, so the Cu electrode is the cathode.Notation
The galvanic cells, as the one shown in the figure, are conventionally described using the following notation:
Zn(s) | ZnSO4(aq) || CuSO4(aq) | Cu(s)
(anode)----------------------------------(cathode)where: (s) denotes
solid ; (aq) meansaqueous solution ; the vertical bar, |, denotes a phase boundary; and the double vertical bar, ||, denotes a liquid junction, for example asalt bridge , for which the junction potential is near zero [Atkins, P., "Physical Chemistry", 6th edition, W.H. Freeman and Company, New York, 1997] .Corrosion
In this way the anode is consumed or corroded. When the anode material corrodes entirely away, the cell's potential drops and the current halts. The metal may be regarded as the fuel that powers the device. A similar process is used in
electroplating . The ionic current in the electrolyte is equal to the current in the external circuit, so a complete circuit is formed with a path through the electrolyte.As can be seen, electrons flow from the oxidized ion at the anode to the reduced atom (formerly an ion) at the cathode. The flow due to this
redox reaction constitutes the current.Electric potential of a Galvanic cell
The potential of a cell can be determined by use of a standard potential table for the two
half cell s involved. An oxidation potential table could also be used, but the reduction table is more common. The calculation assumes that the cell operates at zero current flowing through the circuit.The first step is to identify the two metals reacting in the cell. Then one looks up the "E"
o(standard electrode potential , involt s) for each of the two half reactions. The electric potential for the cell is equal to the more positive "E"ovalue minus the more negative "E"ovalue.For example, in the picture above the solutions are CuSO4 and ZnSO4. Each solution has a corresponding metal strip in it, and a
salt bridge or porous disk connecting the two solutions and allowing SO42− ions to flow freely between the copper and zinc solutions. In order to calculate the electric potential one looks up copper and zinc's half reactions and finds that:Cu2+ + 2e- → Cu (E = +0.34 V);:Zn2+ + 2e- → Zn (E = -0.76 V).
Thus the overall reaction that is going on is:Cu2+ + Zn → Cu + Zn2+.
The electric potential is then +0.34 V - -0.76 V = 1.10 V under standard conditions and when no current flows in the cell.
If the cell is operated under non-standard conditions, the potentials must be adapted using the
Nernst equation . If a current is allowed to flow in the circuit, the potential is going to shift towards zero in comparison with that predicted by the Nernst equation.Galvanic corrosion
Galvanic corrosion is a process that degrades metals
electrochemical ly.Thiscorrosion occurs when two dissimilar metals are placed in contact with each other in the presence of anelectrolyte , such as salt water, forming a galvanic cell. A cell can also be formed if the same metal is exposed to two different concentrations of electrolyte. The resulting electrochemical potential then develops an electric current that electrolytically dissolves the less noble material.Cell types
*
Concentration cell
*Electrolytic cell
*Electrochemical cell
*Lasagna cell
*Lemon battery ee also
*
Alessandro Volta
*Battery (electricity)
*Bio-nano generator
*Electrode potential
*Electrosynthesis
*Galvanic series
*Sacrificial anode
*Volt
*Voltaic pile External links
* " [http://www.sonoma.edu/users/b/brooks/115b/galvanic.html Galvanic (Voltaic) Cells and Electrode Potential] ". Chemistry 115B, Sonoma.edu.
* " [http://www.woodrow.org/teachers/chemistry/institutes/1986/exp28.html Making and testing a simple galvanic cell] ". Woodrow Wilson Leadership Program in Chemistry, The Woodrow Wilson National Fellowship Foundation.
* " [http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/galvan5.swf Galvanic Cell] " An animation.References
Wikimedia Foundation. 2010.