Polignac's conjecture

Polignac's conjecture

In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states:

For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.[1]

The conjecture has not been proven or disproven for any value of n.

For n = 2, it is the twin prime conjecture. For n = 4, it says there are infinitely many cousin primes (pp + 4). For n = 6, it says there are infinitely many sexy primes (pp + 6) with no prime between p and p + 6.

Dickson's conjecture generalizes Polignac's conjecture to cover all prime constellations; the Bateman–Horn conjecture gives conjectured asymptotic densities.

Conjectured density

Let πn(x) for even n be the number of prime gaps of size n below x.

The first Hardy–Littlewood conjecture says the asymptotic density is of form

\pi_n(x) \sim 2 C_n \frac{x}{(\ln x)^2} \sim 2 C_n \int_2^x {dt \over (\ln t)^2}

where Cn is a function of n, and means that the quotient of two expressions tends to 1 as x approaches infinity.[citation needed]

C2 is the twin prime constant

C_2 = \prod_{p\ge 3} \frac{p(p-2)}{(p-1)^2} \approx 0.66016 18158 46869 57392 78121 10014\dots

where the product extends over all prime numbers p ≥ 3.

Cn is C2 multiplied by a number which depends on the odd prime factors q of n:

C_n = C_2 \prod_{q|n} \frac{q-1}{q-2}.

For example, C4 = C2 and C6 = 2C2. Twin primes have the same conjectured density as cousin primes, and half that of sexy primes.

Note that each odd prime factor q of n increases the conjectured density compared to twin primes by a factor of \tfrac{q-1}{q-2}. A heuristic argument follows. It relies on some unproven assumptions so the conclusion remains a conjecture. The chance of a random odd prime q dividing either a or a + 2 in a random "potential" twin prime pair is \tfrac{2}{q}, since q divides 1 of the q numbers from a to a + q − 1. Now assume q divides n and consider a potential prime pair (aa + n). q divides a + n if and only if q divides a, and the chance of that is \tfrac{1}{q}. The chance of (aa + n) being free from the factor q, divided by the chance that (a, a + 2) is free from q, then becomes \tfrac{q-1}{q} divided by \tfrac{q-2}{q}. This equals \tfrac{q-1}{q-2} which transfers to the conjectured prime density. In the case of n = 6, the argument simplifies to: If a is a random number then 3 has chance 2/3 of dividing a or a + 2, but only chance 1/3 of dividing a and a + 6, so the latter pair is conjectured twice as likely to both be prime.

References

  1. ^ Tattersall, J.J. (2005), Elementary number theory in nine chapters, Cambridge University Press, ISBN 978-0-521-85014-8, http://books.google.de/books?id=QGgLbf2oFUYC , p. 112

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Conjecture de De Polignac — La conjecture de De Polignac est une conjecture portant sur la théorie des nombres. Elle fut énoncée par Alphonse de Polignac en 1849[1]. La formulation initiale est la suivante : Tout nombre pair est égal à la différence de deux nombres… …   Wikipédia en Français

  • Conjecture Des Nombres Premiers Jumeaux — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Conjecture des jumeaux premiers — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Conjecture des nombres premiers jumeaux — Nombres premiers jumeaux En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de deux. Hormis pour la paire (2, 3), cette distance de deux est la plus petite distance possible entre deux nombres premiers …   Wikipédia en Français

  • Polignac — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Polignac est un nom de lieu et le nom d une ancienne famille française, la Maison de Polignac, éteinte en 1385, dont le nom a été repris par la branche… …   Wikipédia en Français

  • Alphonse de Polignac — (1817 ndash; 1890) was a French mathematician. In 1849 he made Polignac s conjecture::For every natural number k , there are infinitely many prime gaps of size 2 k .The case k = 1 is the twin prime conjecture.ee also*de Polignac s formula… …   Wikipedia

  • Alphonse de Polignac — Naissance 1817 Décès 1890 Nationalité française Champs Mathématiques Renommé pour Conjecture de De Polignac, Formule de De Polignac …   Wikipédia en Français

  • Twin prime conjecture — The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:: There are infinitely many primes p such that p + 2 is also prime. Such a pair of prime numbers is called a prime twin. The conjecture …   Wikipedia

  • Twin prime — A twin prime is a prime number that differs from another prime number by two. Except for the pair (2, 3), this is the smallest possible difference between two primes. Some examples of twin prime pairs are (3, 5), (5, 7), (11, 13), (17, 19), (29,… …   Wikipedia

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”