Dickson's conjecture

Dickson's conjecture

In number theory, a branch of mathematics, Dickson's conjecture is the conjecture stated by Dickson (1904) that for a finite set of linear forms a1 + nb1, a2 + nb2, ..., ak + nbk with bi ≥ 1, there are infinitely many positive integers n for which they are all prime, unless there is a congruence condition preventing this (Ribenboim 1996, 6.I). The case k = 1 is Dirichlet's theorem.

Two special cases are well known conjectures: there are infinitely many twin primes (n and n + 2 are primes), and there are infinitely many Sophie Germain primes (n and 2n + 1 are primes).

Dickson's conjecture is further extended by Schinzel's hypothesis H.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Conjecture de Dickson — En théorie des nombres, la conjecture de Dickson est une conjecture émise par Leonard Eugene Dickson, selon laquelle pour un ensemble fini de k suites arithmétiques a1 + nb1, a2 + nb2, ..., ak + nbk avec bi ≥ 1, il existe une infinité d entiers… …   Wikipédia en Français

  • Dickson polynomial — In mathematics, the Dickson polynomials, denoted Dn(x,α), form a polynomial sequence studied by L. E. Dickson (1897). Over the complex numbers, Dickson polynomials are essentially equivalent to Chebyshev polynomials with a change of variable …   Wikipedia

  • Conjecture d'Euler — La conjecture d Euler est une conjecture mathématique de théorie des nombres, refutée, mais qui a été originellement proposée par le mathématicien suisse Leonhard Euler en 1769, et qui s énonce de la façon suivante : Pour tout entier n… …   Wikipédia en Français

  • Conjecture de De Polignac — La conjecture de De Polignac est une conjecture portant sur la théorie des nombres. Elle fut énoncée par Alphonse de Polignac en 1849[1]. La formulation initiale est la suivante : Tout nombre pair est égal à la différence de deux nombres… …   Wikipédia en Français

  • Polignac's conjecture — In number theory, Polignac s conjecture was made by Alphonse de Polignac in 1849 and states: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime… …   Wikipedia

  • Leonard Eugene Dickson — Pour les articles homonymes, voir Dickson. Leonard Eugene Dickson (22 janvier 1874 à Independence (Iowa) 17 janvier 1954 à Harlingen (Texas)) est un mathématicien américain, spécialiste en théorie des nombres et en algèbre.… …   Wikipédia en Français

  • Pollock octahedral numbers conjecture — The Pollock octahedral numbers conjecture is a conjecture that every integer is the sum of at most seven octahedral numbers, first stated by Sir Frederick Pollock, better known as a lawyer and politician but also a contributor of papers on… …   Wikipedia

  • Primes in arithmetic progression — In number theory, the phrase primes in arithmetic progression refers to at least three prime numbers that are consecutive terms in an arithmetic progression, for example the primes (3, 7, 11) (it does not matter that 5 is also prime). There are… …   Wikipedia

  • Chevalley–Warning theorem — In algebra, the Chevalley–Warning theorem implies that certain polynomial equations in sufficiently many variables over a finite field have solutions. It was proved by Ewald Warning (1936) and a slightly weaker form of the theorem, known as… …   Wikipedia

  • Cunningham chain — In mathematics, a Cunningham chain is a certain sequence of prime numbers. Cunningham chains are named after mathematician A. J. C. Cunningham. They are also called chains of nearly doubled primes. A Cunningham chain of the first kind of length n …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”