- Promoter
In
biology , a promoter is a region ofDNA that facilitates the transcription of a particulargene . Promoters are typically located near the genes they regulate, on the same strand and upstream (towards the5' region of thesense strand ).Overview
In order for transcription to take place, the enzyme that synthesizes RNA, known as
RNA polymerase , must attach to the DNA near a gene. Promoters contain specific DNA sequences andresponse elements which provide a binding site for RNA polymerase and for proteins calledtranscription factors that recruit RNA polymerase.* In
bacteria , the promoter is recognized byRNA polymerase and an associatedsigma factor , which in turn are brought to the promoter DNA by an activator protein binding to its own DNA sequence nearby.* In
eukaryotes , the process is more complicated, and at least seven different factors are necessary for the binding of anRNA polymerase II to the promoter.Promoters represent critical elements that can work in concert with other regulatory regions (enhancers, silencers, boundary elements/insulators) to direct the level of transcription of a given gene.
Identification of relative location
As promoters are typically immediately adjacent to the gene in question, positions in the promoter are designated relative to the transcriptional start site, where transcription of RNA begins for a particular gene (i.e., positions upstream are negative numbers counting back from -1, for example -100 is a position 100 base pairs upstream).
Promoter elements
* Core promoter - the minimal portion of the promoter required to properly initiate transcription
** Transcription Start Site (TSS)
** Approximately -34
** A binding site forRNA polymerase
***RNA polymerase I : transcribes genes encodingribosomal RNA
***RNA polymerase II : transcribes genes encodingmessenger RNA and certain small nuclear RNAs
***RNA polymerase III : transcribes genes encodingtRNA s and other small RNAs
** General transcription factor binding sites
* Proximal promoter - the proximal sequence upstream of the gene that tends to contain primary regulatory elements
** Approximately -250
** Specific transcription factor binding sites
* Distal promoter - the distal sequence upstream of the gene that may contain additional regulatory elements, often with a weaker influence than the proximal promoter
** Anything further upstream (but not an enhancer or other regulatory region whose influence is positional/orientation independent)
** Specific transcription factor binding sitesProkaryotic promoters
In
prokaryote s, the promoter consists of two short sequences at -10 and -35 positions "upstream" from the transcription start site. Sigma factors not only help in enhancing RNAP binding to the promoter but helps RNAP target which genes to transcribe.* The sequence at -10 is called the
Pribnow box , or the -10 element, and usually consists of the six nucleotides TATAAT. The Pribnow box is absolutely essential to start transcription in prokaryotes Fact|date=March 2008
* The other sequence at -35 (the -35 element) usually consists of the six nucleotides TTGACA. Its presence allows a very high transcription rate Fact|date=March 2008.
* Both of the above consensus sequences, while conserved on average, are not found intact in most promoters. On average only 3 of the 6 base pairs in each consensus sequence is found in any given promoter. No promoter has been identified to date that has intact consensus sequences at both the -10 and -35; it is thought that this would lead to such tight binding by the sigma factor that the polymerase would be unable to initiate productive transcription Fact|date=March 2008.
* Some promoters contain aUP element (consensus sequence 5’-AAAWWTWTTTTNNNAAANNN-3'; W = A or T; N = any base) centered at -50; the presence of the -35 element appears to be unimportant for transcription from the UP element-containing promoters. Fact|date=March 2008It should be noted that the above promoter sequences are only recognized by the
sigma-70 protein that interacts with the prokaryotic RNA polymerase. Complexes of prokaryotic RNA polymerase with other sigma factors recognize totally different core promoter sequences.<-- upstream downstream--> 5'-XXXXXXXPPPPPXXXXXXPPPPPPXXXXGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGXXXX-3' -35 -10 Gene to be transcribed . (note that the optimal spacing between the -35 and -10 sequences is 17 nt)Probability of occurrence of each nucleotide
for -10 sequence T A T A A T 77% 76% 60% 61% 56% 82%
for -35 sequence T T G A C A 69% 79% 61% 56% 54% 54%
Eukaryotic promoters
Eukaryotic promoters are extremely diverse and are difficult to characterize. They typically lie upstream of the gene and can have regulatory elements several kilobases away from the transcriptional start site(enhancers). In eukaryotes, the transcriptional complex can cause the DNA to bend back on itself, which allows for placement of regulatory sequences far from the actual site of transcription. Many eukaryotic promoters, but by no means all, contain aTATA box (sequence TATAAA), which in turn binds aTATA binding protein which assists in the formation of theRNA polymerase transcriptional complex. [Smale ST, Kadonaga JT (2003). The RNA polymerase II core promoter. Annu Rev Biochem. 72, 449-479. PMID 12651739 [http://www.lpt.ens.fr/~monasson/Houches/Kadonaga/CorePromoterAnnuRev2003.pdf PDF] ] The TATA box typically lies very close to the transcriptional start site (often within 50 bases).Eukaryotic promoter regulatory sequences typically bind proteins called
transcription factors which are involved in the formation of the transcriptional complex. An example is theE-box (sequence CACGTG), which binds transcription factors in thebasic-helix-loop-helix (bHLH) family (e.g.BMAL1-Clock ,cMyc ). [Levine M, Tjian R (2003). Transcription regulation and animal diversity. Nature. 424(6945), 147-151. PMID 12853946 [http://bioweb.usc.edu/courses/2003-fall/documents/bisc320-gp_article1.pdf PDF] ]Detection of promoters
A wide variety of algorithms have been developed to facilitate detection of promoters in genomic sequence, and promoter prediction is a common element of many
gene prediction methods.Evolutionary change
A major question in
evolutionary biology is how important tinkering with promoter sequences is to evolutionary change, for example, the changes that have occurred in the human lineage after separating from chimps.Some evolutionary biologists, for example
Allan Wilson , have proposed that evolution in promoter or regulatory regions may be more important than changes in coding sequences over such time frames.Binding
The binding of a promoter sequence (P) to a
sigma factor -RNAP complex (R) is a two-step process:
#R+P ↔ RP(closed). "K" = 107
#RP(closed) → RP(open). "K" = 10−2Diseases associated with aberrant promoter function
Though
OMIM is a major resource for gathering information on the relationship between mutations and natural variation in gene sequence and susceptibility to hundreds ofdiseases , it requires a sophisticated search strategy to extract those diseases that are associated with defects in transcriptional control where the promoter is believed to have direct involvement.This is a
list of diseases that evidence suggests have some involvement of promoter malfunction, either through directmutation of a promoter sequence or mutation in atranscription factor ortranscriptional co-activator .Keep in mind that most diseases are heterogeneous in , meaning that one "disease" is often many different diseases at the molecular level, though the symptoms exhibited and the response to treatment might be identical. How diseases respond differently to treatment as a result of differences in the underlying molecular origins is partially addressed by the discipline of
pharmacogenomics .Not listed here are the many kinds of
cancer s that involve aberrant changes in transcriptional regulation owing to the creation ofchimeric gene s through pathologicalchromosomal translocation .Canonical sequences and wild-type
The usage of canonical sequence for a promoter is often problematic, and can lead to misunderstandings about promoter sequences. Canonical implies perfect, in some sense.
In the case of a transcription factor binding site, then there may be a single sequence which binds the protein most strongly under specified cellular conditions. This might be called canonical.
However, natural selection may favor less energetic binding as a way of regulating transcriptional output. In this case, we may call the most common sequence in a population, the wild-type sequence. It may not even be the most advantageous sequence to have under prevailing conditions.
Recent evidence also indicates that several genes (including the
proto-oncogene c-myc ) haveG-quadruplex motifs as potential regulatory signals.Diseases associated with promoter elements
*
Asthma [population genetics study: Hobbs, K.; Negri, J.; Klinnert, M.; Rosenwasser, L.J.; and Borish, L. (1998). Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. "Am J Respir Crit Care Med". 158 (6), 1958-1962. PMID 9847292 ] [population genetics study: Burchard, E.G.; Silverman, E.K.; Rosenwasser, L.J.; Borish, L.; Yandava, C.; Pillari, A.; Weiss, S.T.; Hasday, J.; Lilly, C.M.; Ford, J.G.; and Drazen, J.M. (1999). Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. "Am J Respir Crit Care Med". 160 (3), 919-922. PMID 10471619]
*Beta thalassemia [Kulozik, A.E.; Bellan-Koch, A.; Bail, S.; Kohne, E.; and Kleihauer, E. (1991). Thalassemia intermedia: moderate reduction of beta globin gene transcriptional activity by a novel mutation of the proximal CACCC promoter element. "Blood". 77 (9), 2054-2058. PMID 2018842]
*Rubinstein-Taybi syndrome [Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, et al. (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. "Nature". 376 (6538), 348-351. PMID 7630403]References
External links
* "Directory of computational tools for detecting promoters in sequence data": cite web
url = http://www.biodirectory.com/biowiki/Promoter_finders
title = BioDirectory
accessdate = 2006-12-11
format = Directory
work = BioDirectory
publisher =Oxford Informatics
* [http://www.oreganno.org ORegAnno - Open Regulatory Annotation Database]
*
* [http://www.switchdb.com SwitchDB] - An online database used to analyze promoters and transcription start sites (TSSs) throughout the human genome.
* [http://www.pleiades.org Pleiades Promoter Project] - a research project with an aim to generate 160 fully characterized, human DNApromoters of less than 4 kb (MiniPromoters) to drivegene expression in defined brain regions of therapeutic interests.
Wikimedia Foundation. 2010.