Hamburger moment problem

Hamburger moment problem

In mathematics, the Hamburger moment problem, named after Hans Ludwig Hamburger, is formulated as follows: given a sequence { "αn" : "n" = 1, 2, 3, ... }, does there exist a positive Borel measure "μ" on the real line such that

:alpha_n = int_{-infty}^infty x^n,d mu(x).

In other words, an affirmative answer to the problem means that { "αn" : "n" = 0, 1, 2, ... } is the sequence of moments of some positive Borel measure "μ".

The Stieltjes moment problem, Vorobyev moment problem, and the Hausdorff moment problem are similar but replace the real line by [0, +∞) (Stieltjes and Vorobyev; but Vorobyev formulates the problem in the terms of matrix theory), or a bounded interval (Hausdorff).

Characterization

The Hamburger moment problem is solvable, that is, {"αn"} is a sequence of moments, if and only if the corresponding Hankel kernel on the nonnegative integers

:A =left(egin{matrix}alpha_0 & alpha_1 & alpha_2 & cdots \alpha_1 & alpha_2 & alpha_3 & cdots \alpha_2 & alpha_3 & alpha_4 & cdots \vdots & vdots & vdots & ddots \end{matrix} ight)

is positive definite, i.e.,

: sum_{j,kge0}alpha_{j+k}c_jar c_kge0

for an arbitrary sequence {"cj"}"j ≥ 0" of complex numbers with finite support, i.e. "cj" = 0 except for finitely many values of "j".

The "only if" part of the claims can be verified by a direct calculation.

We sketch an argument for the converse. Let Z+ be the nonnegative integers and "F"0(Z+) denote the family of complex valued sequences with finite support. The positive Hankel kernel "A" induces a (possibly degenerate) sesquilinear product on the family of complex valued sequences with finite support. This in turn gives a Hilbert space

:(mathcal{H}, langle, ; angle)

whose typical element is an equivalence class denoted by ["f"] .

Let "en" be the element in "F"0(Z+) defined by "en"("m") = "δnm". One notices that

:langle [e_{n+1}] , [e_m] angle = A_{m,n+1} = alpha_{m+n+1} = langle [e_{n}] , [e_{m+1}] angle.

Therefore the "shift" operator "T" on mathcal{H}, with "T" ["en"] = ["e""n" + 1] , is symmetric.

On the other hand, the desired expression

:alpha_n = int_{-infty}^infty x^n,d mu(x). suggests that "μ" is the spectral measure of a self-adjoint operator. If we can find a "function model" such that the symmetric operator "T" is multiplication by "x", then the spectral resolution of a self-adjoint extension of "T" proves the claim.

A function model is given by the natural isomorphism from "F"0(Z+) to the family of polynomials, in one single real variable and complex coefficients: for "n" ≥ 0, identify "en" with "xn". In the model, the operator "T" is multiplication by "x" and a densely defined symmetric operator. It can be shown that "T" always has self-adjoint extensions. Let

: ar{T}

be one of them and "μ" be its spectral measure. So

:langle ar{T}^n [1] , [1] angle = int x^n d mu(x).

On the other hand,

: langle ar{T}^n [1] , [1] angle = langle T^n [e_0] , [e_0] angle = alpha_n.

Uniqueness of solutions

The solutions form a convex set, so the problem has either infinitely many solutions or a unique solution.

Consider the ("n" + 1)×("n" + 1) Hankel matrix

:Delta_n=left [egin{matrix}alpha_0 & alpha_1 & alpha_2 & cdots & alpha_{n} \alpha_1 & alpha_2 & alpha_3 & cdots & alpha_{n+1} \alpha_2 & alpha_3 & alpha_4 & cdots & alpha_{n+2} \vdots & vdots & vdots & ddots & vdots \alpha_{n} & alpha_{n+1} & alpha_{n+2} & cdots & alpha_{2n}end{matrix} ight] .

Positivity of "A" means that for each "n", det(Δ"n") ≥ 0. If det(Δ"n") = 0, for some "n", then

:(mathcal{H}, langle, ; angle)

is finite dimensional and "T" is self-adjoint. So in this case the solution to the Hamburger moment problem is unique and "μ", being the spectral measure of "T", has finite support.

More generally, the solution is unique if there are constants "C" and "D" such that for all "n", |α"n"|≤ "CD""n""n"! harv|Reed|Simon|1975|p=205.

There are examples where the solution is not unique.

Further results

One can see that the Hamburger moment problem is intimately related to orthogonal polynomials on the real line. The Gram-Schmidt procedure gives a basis of orthogonal polynomials in which the operator

: ar{T}

has a tridiagonal "Jacobi matrix representation". This in turn leads to a "tridiagonal model" of positive Hankel kernels.

An explicit calculation of the Cayley transform of "T" shows the connection with what is called the "Nevanlinna class" of analytic functions on the left half plane. Passing to the non-commutative setting, this motivates "Krein's formula" which parametrizes the extensions of partial isometries.

References

*citation|first=Michael|last=Reed|first2=Barry|last2=Simon|title=Fourier Analysis, Self-Adjointness|year=1975|ISBN=0-12-585002-6|series=Methods of modern mathematical physics|volume=2|publisher=Academic Press|page=145, 205
*.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Moment problem — In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure μ to the sequences of moments More generally, one may consider for an arbitrary sequence of functions Mn. Contents 1 …   Wikipedia

  • Hausdorff moment problem — In mathematics, the Hausdorff moment problem, named after Felix Hausdorff, asks for necessary and sufficient conditions that a given sequence { mn : n = 0, 1, 2, ... } be the sequence of moments of… …   Wikipedia

  • Stieltjes moment problem — In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions that a sequence { mu; n , : n = 0, 1, 2, ... } be of the form:mu n=int 0^infty x^n,dF(x),for some nondecreasing function …   Wikipedia

  • Moment (mathematics) — Second moment redirects here. For the technique in probability theory, see Second moment method. See also: Moment (physics) Increasing each of the first four moments in turn while keeping the others constant, for a discrete uniform distribution… …   Wikipedia

  • Moment (mathématiques) — Pour les articles homonymes, voir Moment. En probabilités (mathématiques, statistiques), on définit le moment d ordre n>0 d une variable aléatoire X, s il existe, le nombre . Sommaire 1 …   Wikipédia en Français

  • Hans Hamburger — Hans Ludwig Hamburger (5 August 1889, Berlin ndash; 14 August 1956 Cologne) was a German mathematician. He was a professor at universities in Berlin, Cologne and Ankara.He obtained his Ph.D. from the University of Munich in 1914 under the… …   Wikipedia

  • Hamburger Bürgerschaft — Die Hamburgische Bürgerschaft ist seit 1859 das Parlament der Stadt Hamburg. Heute ist es eines von sechzehn Landesparlamenten der Bundesrepublik Deutschland und nimmt als Stadtstaat zugleich kommunalpolitische Aufgaben wahr. 1859 wurde die… …   Deutsch Wikipedia

  • Hans Hamburger — Hans Ludwig Hamburger (* 5. August 1889 in Berlin; † 14. August 1956 in Köln) war ein deutscher Mathematiker. Er wirkte als Professor für Mathematik an den Universitäten in Berlin, Köln und Ankara. Inhaltsverzeichnis 1 Ausbildung und Studium 2… …   Deutsch Wikipedia

  • Hans Ludwig Hamburger — (* 5. August 1889 in Berlin; † 14. August 1956 in Köln) war ein deutscher Mathematiker. Er wirkte als Professor für Mathematik an den Universitäten in Berlin, Köln und Ankara. Sein Elternhaus kann als gutbürgerlich bezeichnet werden. Sein Vater… …   Deutsch Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”