- Carbocation
A carbocation (pronEng|ˌkɑrboʊˈkætaɪɒn) is an
ion with a positively-chargedcarbon atom . The charged carbon atom in a carbocation is a "sextet", i.e. it has only sixelectron s in its outer valence shell instead of the eight valence electrons that ensures maximum stability (octet rule ). Therefore carbocations are often reactive, seeking to fill the octet of valence electrons as well as regain a neutral charge. One could reasonably assume a carbocation to have sp3 hybridization with an empty sp3 orbital giving positive charge. However, the reactivity of a carbocation more closely resembles sp2 hybridization with atrigonal planar molecular geometry.Definitions
A carbocation was previously often called a "carbonium ion" but questions arose on the exact meaning [
Gold Book definition [http://www.iupac.org/goldbook/C00839.pdf Link] ] . In present day chemistry a carbocation is any positively charged carbon atom. Two special types have been suggested:carbenium ion s are trivalent andcarbonium ion s are pentavalent or hexavalent. University level textbooks only discuss carbocations as if they are carbenium ions ["Organic chemistry" 5th Ed. John McMurry ISBN 0534376177 ] , or discuss carbocations with a fleeting reference to the older phrase of carbonium ion ["Organic Chemistry", Fourth Edition Paula Yurkanis Bruice ISBN 0131407481] or carbenium and carbonium ions ["Organic Chemistry" Jonathan Clayden, Nick Geeves, Stuart Warren First Edition ISBN 0198503466] . One textbook to this day clings on to the older name of carbonium ion for carbenium ion and reserves the phrase "hypervalent carbenium ion" for CH5+ ["Organic Chemistry" by Marye Anne Fox and James K. Whitesell ISBN 076370413X] .History
The history of carbocations dates back to 1891 when G. Merling [Chem. Ber. 24, 3108 1891] reported that he added bromine to tropylidene (
cycloheptatriene ) and then heated the product to obtain a crystalline, water soluble material, C7H7Br. He did not suggest a structure for it; however Doering and Knox [The Cycloheptatrienylium (Tropylium) Ion W. Von E.Doering and L. H. KnoxJ. Am. Chem. Soc. ; 1954; 76(12) pp 3203 - 3206; DOI|10.1021/ja01641a027] convincingly showed that it was tropylium (cycloheptatrienylium) bromide. This ion is predicted to be aromatic by the Hückel Rule.In 1902 Norris and Kehrman independently discovered that colorless
triphenylmethanol gave deep yellow solutions in concentratedsulfuric acid . Triphenylmethyl chloride similarly formed orange complexes with aluminium and tin chlorides.Adolf von Baeyer recognized in 1902 the salt like character of the compounds formed.:Ph3C—OH + H2SO4 unicode|→ Ph3C+HSO4− + H2O (Ph stands for a
phenyl substituent )He dubbed the relationship between color and salt formation halochromy of which
malachite green is a prime example.Carbocations are
reactive intermediates in many organic reactions. This idea, first proposed by Julius Stieglitz in 1899 (On the Constitution of the Salts of Imido-Ethers and other Carbimide Derivatives; Am. Chem. J. 21, 101; ISSN: 0096-4085) was further developed by Hans Meerwein in his 1922 study [H. Meerwein and K. van Emster, "Berichte", 1922, "55", 2500.] of theWagner-Meerwein rearrangement . Carbocations were also found to be involved in theSN1 reaction and E1 reaction and inrearrangement reaction s such as theWhitmore 1,2 shift . The chemical establishment was reluctant to accept the notion of a carbocation and for a long time the Journal of the American Chemical Society refused articles that mentioned them. The firstNMR spectrum of a stable carbocation in solution was published by Doering et al. ["The 1,1,2,3,4,5,6-heptamethylbenzenonium ion" W. von E. Doering and M. Saunders H. G. Boyton, H. W. Earhart, E. F. Wadley and W. R. Edwards G. Laber Tetrahedron Volume 4, Issues 1-2 , 1958, Pages 178-185 doi|10.1016/0040-4020(58)88016-3 ] . It was the heptamethylbenzenonium ion, made by treatinghexamethylbenzene withmethyl chloride andaluminium chloride . The stable 7-norbornadienyl cation was prepared by Story et al. ["The 7-norbornadienyl carbonium ion" Paul R. Story and Martin SaundersJ. Am. Chem. Soc. ; 1960; 82(23) pp 6199 - 6199; DOI|10.1021/ja01508a058] by reacting norbornadienyl chloride withsilver tetrafluoroborate insulfur dioxide at −80°C . The NMR spectrum established that it was nonclassically bridged (the first stablenon-classical ion observed).In 1962 Olah directly observed the
tert-butyl carbocation byNuclear magnetic resonance as a stable species on dissolving tert-butyl fluoride inmagic acid . The NMR of norbornyl cation was first reported by Schleyer et al. ["Stable Carbonium Ions. X.1 Direct Nuclear Magnetic Resonance Observation of the 2-Norbornyl Cation" Paul von R. Schleyer, William E. Watts, Raymond C. Fort, Melvin B. Comisarow, and George A. OlahJ. Am. Chem. Soc. ; 1964; 86(24) pp 5679 - 5680; DOI|10.1021/ja01078a056] and it was shown to undergo proton scrambling over a barrier by Saunders et al. ["Stable Carbonium Ions. XI.1 The Rate of Hydride Shifts in the 2-Norbornyl Cation" Martin Saunders, Paul von R. Schleyer, and George A. OlahJ. Am. Chem. Soc. ; 1964; 86(24) pp 5680 - 5681; DOI|10.1021/ja01078a057] .Properties
ions.
Carbocations are classified as "primary", "secondary", or "tertiary" depending on the number of carbon atoms bonded to the ionized carbon. Primary carbocations have one or zero carbons attached to the ionized carbon, secondary carbocations have two carbons attached to the ionized carbon, and tertiary carbocations have three carbons attached to the ionized carbon.
Stability of the carbocation increases with the number of alkyl groups bonded to the charge-bearing carbon. Tertiary carbocations are more stable (and form more readily) than secondary carbocations; primary carbocations are highly unstable because, while ionized higher-order carbons are stabilized by
Hyperconjugation , unsubstituted (primary) carbons are not. Therefore, reactions such as the SN1 reaction and the E1elimination reaction normally do not occur if a primary carbocation would be formed. An exception to this occurs when there is a carbon-carbon double bond next to the ionized carbon. Such cations as "allyl " cation CH2=CH-CH2+ and "benzyl " cation C6H5-CH2+ are more stable than most other carbocations. Molecules which can form allyl or benzyl carbocations are especially reactive.Carbocations undergo
rearrangement reaction s from less stable structures to equally stable or more stable ones withrate constant s in excess of 1.0E9/sec. This fact complicates synthetic pathways to many compounds. For example, when 3-pentanol is heated with aqueous HCl, the initially formed 3-pentyl carbocation rearranges to a statistical mixture of the 3-pentyl and 2-pentyl. These cations react with chloride ion to produce about 1/3 3-chloropentane and 2/3 2-chloropentane.Some carbocations such as the norbornyl cation exhibit more or less symmetrical three centre bonding. Cations of this sort have been referred to as
non-classical ion s. The energy difference between "classical" carbocations and "non-classical" isomers is often very small, and there is generally little, if any activation energy involved in the transition between "classical" and "non-classical" structures. The "non-classical" form of the 2-butyl carbocation is essentially 2-butene with a proton directly above the centre of what would be the carbon-carbon double bond. "Non-classical" carbocations were once the subject of great controversy. One ofGeorge Olah 's greatest contributions to chemistry was resolving this controversy [ [http://nobelprize.org/chemistry/laureates/1994/olah-lecture.html George A. Olah - Nobel Lecture ] ] .References
Wikimedia Foundation. 2010.