Müntz–Szász theorem

Müntz–Szász theorem

The Müntz–Szász theorem is a basic result of approximation theory, proved by Herman Müntz in 1914 and Otto Szász (1884–1952) in 1916. Roughly speaking, the theorem shows to what extent the Weierstrass theorem on polynomial approximation can have holes dug into it, by restricting certain coefficients in the polynomials to be zero. The form of the result had been conjectured by Sergei Bernstein before it was proved.

The theorem, in a special case, states that a necessary and sufficient condition for the monomials

x^n\

to span a dense subset of the Banach space C[a,b] of all continuous functions with complex number values on the closed interval [a,b] with a > 0, with the uniform norm, when the n form a subset S of the natural numbers, is that the sum

Σ n−1

of the reciprocals, taken over S, should diverge. For an interval [0, b], the constant functions are necessary: assuming therefore that 0 is in S, the condition on the other exponents is as before.

More generally, one can take exponents from any strictly increasing sequence of positive real numbers, and the same result holds. Szász showed that for complex number exponents, the same condition applied to the sequence of real parts.

There are also versions for the Lp spaces.

See also

References

  • Müntz, Ch. H., Über den Approximationssatz von Weierstrass, (1914) in H. A. Schwarz's Festschrift, Berlin, pp. 303–312. Scanned at HAT site
  • Szász, O., Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann., 77 (1916), pp. 482–496

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Muntz — (or Müntz) is a surname and may refer to: Contents 1 Muntz 2 Müntz 3 See also 4 References Muntz George Frede …   Wikipedia

  • Müntz — Das Wort Müntz steht für: eine veraltete Schreibweise für das Wort „Münze“, das verschiedene Bedeutungen haben kann: siehe Münze (Begriffsklärung) Johann Heinrich Müntz (1727–1789), Schweizer Portrait und Landschaftsmaler, Architektur Zeichner,… …   Deutsch Wikipedia

  • Otto Szász — (11 December 1884, Hungary – 19 December 1952, Cincinnati, Ohio) was a Hungarian mathematician who worked on real analysis, in particular on Fourier series. He proved the Müntz–Szász theorem and introduced the Szász–Mirakyan operator. The… …   Wikipedia

  • Muentz — Das Wort Müntz steht für: eine veraltete Schreibweise für das Wort „Münze“, das verschiedene Bedeutungen haben kann: siehe Münze (Begriffsklärung) Johann Heinrich Müntz (1727–1789), schweizerischer Portrait und Landschaftsmaler, Architektur… …   Deutsch Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Small set (combinatorics) — In combinatorial mathematics, a small set of positive integers:S = {s 0,s 1,s 2,s 3,dots}is one such that the infinite sum:frac{1}{s 0}+frac{1}{s 1}+frac{1}{s 2}+frac{1}{s 3}+cdots converges. A large set is any other set of positive integers (i.e …   Wikipedia

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”