List of integrals of irrational functions

List of integrals of irrational functions

__NOTOC__The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals.


= Integrals involving r = sqrt{x^2+a^2} =

: int r ;dx = frac{1}{2}left(x r +a^2,lnleft(x+r ight) ight)

: int r^3 ;dx = frac{1}{4}xr^3+frac{1}{8}3a^2xr+frac{3}{8}a^4lnleft(x+r ight)

: int r^5 ; dx = frac{1}{6}xr^5+frac{5}{24}a^2xr^3+frac{5}{16}a^4xr+frac{5}{16}a^6lnleft(x+r ight)

: int x r;dx=frac{r^3}{3}

: int x r^3;dx=frac{r^5}{5}

: int x r^{2n+1};dx=frac{r^{2n+3{2n+3}

: int x^2 r;dx= frac{xr^3}{4}-frac{a^2xr}{8}-frac{a^4}{8}lnleft(x+r ight)

: int x^2 r^3;dx= frac{xr^5}{6}-frac{a^2xr^3}{24}-frac{a^4xr}{16}-frac{a^6}{16}lnleft(x+r ight)

: int x^3 r ; dx = frac{r^5}{5} - frac{a^2 r^3}{3}

: int x^3 r^3 ; dx = frac{r^7}{7}-frac{a^2r^5}{5}

: int x^3 r^{2n+1} ; dx = frac{r^{2n+5{2n+5} - frac{a^3 r^{2n+3{2n+3}

: int x^4 r;dx= frac{x^3r^3}{6}-frac{a^2xr^3}{8}+frac{a^4xr}{16}+frac{a^6}{16}lnleft(x+r ight)

: int x^4 r^3;dx= frac{x^3r^5}{8}-frac{a^2xr^5}{16}+frac{a^4xr^3}{64}+frac{3a^6xr}{128}+frac{3a^8}{128}lnleft(x+r ight)

: int x^5 r ; dx = frac{r^7}{7} - frac{2 a^2 r^5}{5} + frac{a^4 r^3}{3}

: int x^5 r^3 ; dx = frac{r^9}{9} - frac{2 a^2 r^7}{7} + frac{a^4 r^5}{5}

: int x^5 r^{2n+1} ; dx = frac{r^{2n+7{2n+7} - frac{2a^2r^{2n+5{2n+5}+frac{a^4 r^{2n+3{2n+3}

: intfrac{r;dx}{x} = r-alnleft|frac{a+r}{x} ight| = r - a, operatorname{arsinh}frac{a}{x}

: intfrac{r^3;dx}{x} = frac{r^3}{3}+a^2r-a^3lnleft|frac{a+r}{x} ight|

: intfrac{r^5;dx}{x} = frac{r^5}{5}+frac{a^2r^3}{3}+a^4r-a^5lnleft|frac{a+r}{x} ight|

: intfrac{r^7;dx}{x} = frac{r^7}{7}+frac{a^2r^5}{5}+frac{a^4r^3}{3}+a^6r-a^7lnleft|frac{a+r}{x} ight|

: intfrac{dx}{r} = operatorname{arsinh}frac{x}{a} = lnleft|x+r ight|

: intfrac{dx}{r^3} = frac{x}{a^2r}

: intfrac{x,dx}{r} = r

: intfrac{x,dx}{r^3} = -frac{1}{r}

: intfrac{x^2;dx}{r} = frac{x}{2}r-frac{a^2}{2},operatorname{arsinh}frac{x}{a} = frac{x}{2}r-frac{a^2}{2}lnleft|x+r ight|

: intfrac{dx}{xr} = -frac{1}{a},operatorname{arsinh}frac{a}{x} = -frac{1}{a}lnleft|frac{a+r}{x} ight|


= Integrals involving s = sqrt{x^2-a^2}=

Assume (x^2>a^2), for (x^2, see next section:: int xs;dx = frac{1}{3}s^3

: intfrac{s;dx}{x} = s - aarccosleft|frac{a}{x} ight|

: intfrac{dx}{s} = intfrac{dx}{sqrt{x^2-a^2 =lnleft|frac{x+s}{a} ight|Note that lnleft|frac{x+s}{a} ight
=mathrm{sgn}(x),operatorname{arcosh}left|frac{x}{a} ight
=frac{1}{2}lnleft(frac{x+s}{x-s} ight), where the positive value of operatorname{arcosh}left|frac{x}{a} ight| is to be taken.

: intfrac{x;dx}{s} = s

: intfrac{x;dx}{s^3} = -frac{1}{s}

: intfrac{x;dx}{s^5} = -frac{1}{3s^3}

: intfrac{x;dx}{s^7} = -frac{1}{5s^5}

: intfrac{x;dx}{s^{2n+1 = -frac{1}{(2n-1)s^{2n-1

: intfrac{x^{2m};dx}{s^{2n+1= -frac{1}{2n-1}frac{x^{2m-1{s^{2n-1+frac{2m-1}{2n-1}intfrac{x^{2m-2};dx}{s^{2n-1

: intfrac{x^2;dx}{s}= frac{xs}{2}+frac{a^2}{2}lnleft|frac{x+s}{a} ight|

: intfrac{x^2;dx}{s^3}= -frac{x}{s}+lnleft|frac{x+s}{a} ight|

: intfrac{x^4;dx}{s}= frac{x^3s}{4}+frac{3}{8}a^2xs+frac{3}{8}a^4lnleft|frac{x+s}{a} ight|

: intfrac{x^4;dx}{s^3}= frac{xs}{2}-frac{a^2x}{s}+frac{3}{2}a^2lnleft|frac{x+s}{a} ight|

: intfrac{x^4;dx}{s^5}= -frac{x}{s}-frac{1}{3}frac{x^3}{s^3}+lnleft|frac{x+s}{a} ight|

: intfrac{x^{2m};dx}{s^{2n+1= (-1)^{n-m}frac{1}{a^{2(n-m)sum_{i=0}^{n-m-1}frac{1}{2(m+i)+1}{n-m-1 choose i}frac{x^{2(m+i)+1{s^{2(m+i)+1qquadmbox{(}n>mge0mbox{)}

: intfrac{dx}{s^3}=-frac{1}{a^2}frac{x}{s}

: intfrac{dx}{s^5}=frac{1}{a^4}left [frac{x}{s}-frac{1}{3}frac{x^3}{s^3} ight]

: intfrac{dx}{s^7}=-frac{1}{a^6}left [frac{x}{s}-frac{2}{3}frac{x^3}{s^3}+frac{1}{5}frac{x^5}{s^5} ight]

: intfrac{dx}{s^9}=frac{1}{a^8}left [frac{x}{s}-frac{3}{3}frac{x^3}{s^3}+frac{3}{5}frac{x^5}{s^5}-frac{1}{7}frac{x^7}{s^7} ight]

: intfrac{x^2;dx}{s^5}=-frac{1}{a^2}frac{x^3}{3s^3}

: intfrac{x^2;dx}{s^7}= frac{1}{a^4}left [frac{1}{3}frac{x^3}{s^3}-frac{1}{5}frac{x^5}{s^5} ight]

: intfrac{x^2;dx}{s^9}= -frac{1}{a^6}left [frac{1}{3}frac{x^3}{s^3}-frac{2}{5}frac{x^5}{s^5}+frac{1}{7}frac{x^7}{s^7} ight]


= Integrals involving u = sqrt{a^2-x^2}=

: int u ;dx = frac{1}{2}left(xu+a^2arcsinfrac{x}{a} ight) qquadmbox{(}|x|leq|a|mbox{)}

: int xu;dx = -frac{1}{3} u^3 qquadmbox{(}|x|leq|a|mbox{)}

: intfrac{u;dx}{x} = u-alnleft|frac{a+u}{x} ight| qquadmbox{(}|x|leq|a|mbox{)}

: intfrac{dx}{u} = arcsinfrac{x}{a} qquadmbox{(}|x|leq|a|mbox{)}

: intfrac{x^2;dx}{u} = frac{1}{2}left(-xu+a^2arcsinfrac{x}{a} ight) qquadmbox{(}|x|leq|a|mbox{)}

: int u;dx = frac{1}{2}left(xu-sgn x,operatorname{arcosh}left|frac{x}{a} ight| ight) qquadmbox{(for }|x|ge|a|mbox{)}


= Integrals involving R = sqrt{ax^2+bx+c}=

Assume ("ax"2 + "bx" + "c") cannot be reduced to the following expression ("px" + "q")2 for some "p" and "q".

: intfrac{dx}{R} = frac{1}{sqrt{alnleft|2sqrt{a}R+2ax+b ight| qquad mbox{(for }a>0mbox{)}

: intfrac{dx}{R} = frac{1}{sqrt{a,operatorname{arsinh}frac{2ax+b}{sqrt{4ac-b^2 qquad mbox{(for }a>0mbox{, }4ac-b^2>0mbox{)}

: intfrac{dx}{R} = frac{1}{sqrt{aln|2ax+b| quad mbox{(for }a>0mbox{, }4ac-b^2=0mbox{)}

: intfrac{dx}{R} = -frac{1}{sqrt{-aarcsinfrac{2ax+b}{sqrt{b^2-4ac qquad mbox{(for }a<0mbox{, }4ac-b^2<0mbox{, }left|2ax+b ight|

: intfrac{dx}{R^3} = frac{4ax+2b}{(4ac-b^2)R}

: intfrac{dx}{R^5} = frac{4ax+2b}{3(4ac-b^2)R}left(frac{1}{R^2}+frac{8a}{4ac-b^2} ight)

: intfrac{dx}{R^{2n+1 = frac{2}{(2n-1)(4ac-b^2)}left(frac{2ax+b}{R^{2n-1+4a(n-1)intfrac{dx}{R^{2n-1 ight)

: intfrac{x}{R};dx = frac{R}{a}-frac{b}{2a}intfrac{dx}{R}

: intfrac{x}{R^3};dx = -frac{2bx+4c}{(4ac-b^2)R}

: intfrac{x}{R^{2n+1;dx = -frac{1}{(2n-1)aR^{2n-1-frac{b}{2a}intfrac{dx}{R^{2n+1

: intfrac{dx}{xR}=-frac{1}{sqrt{clnleft(frac{2sqrt{c}R+bx+2c}{x} ight)

: intfrac{dx}{xR}=-frac{1}{sqrt{coperatorname{arsinh}left(frac{bx+2c}{|x|sqrt{4ac-b^2 ight)


= Integrals involving S = sqrt{ax+b}=

: int S {dx} = frac{2 S^{3{3 a}

: int frac{dx}{S} = frac{2S}{a}

: int frac{dx}{x S} =egin{cases} -frac{2}{sqrt{b mathrm{arcoth}left( frac{S}{sqrt{b ight) & mbox{(for }b > 0, quad a x > 0mbox{)} \ -frac{2}{sqrt{b mathrm{artanh}left( frac{S}{sqrt{b ight) & mbox{(for }b > 0, quad a x < 0mbox{)} \ frac{2}{sqrt{-b arctanleft( frac{S}{sqrt{-b ight) & mbox{(for }b < 0mbox{)} \ end{cases}

: intfrac{S}{x},dx =egin{cases} 2 left( S - sqrt{b},mathrm{arcoth}left( frac{S}{sqrt{b ight) ight) & mbox{(for }b > 0, quad a x > 0mbox{)} \ 2 left( S - sqrt{b},mathrm{artanh}left( frac{S}{sqrt{b ight) ight) & mbox{(for }b > 0, quad a x < 0mbox{)} \ 2 left( S - sqrt{-b} arctanleft( frac{S}{sqrt{-b ight) ight) & mbox{(for }b < 0mbox{)} \end{cases}

: int frac{x^{n{S} dx = frac{2}{a (2 n + 1)} left( x^{n} S - b n int frac{x^{n - 1{S} dx ight)

: int x^{n} S dx = frac{2}{a (2 n + 3)} left(x^{n} S^{3} - n b int x^{n - 1} S dx ight)

: int frac{1}{x^{n} S} dx = -frac{1}{b (n - 1)} left( frac{S}{x^{n - 1 + left( n - frac{3}{2} ight) a int frac{dx}{x^{n - 1} S} ight)

References

* cite book
last=Peirce
first=Benjamin Osgood
title=A Short Table of Integrals
origyear=1899
edition=3rd revised ed.
year=1929
publisher=Ginn and Co.
location=Boston
pages=pp. 16-30
chapter=Chap. 3

* Milton Abramowitz and Irene A. Stegun, eds., "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables" 1972, Dover: New York. "(See [http://www.math.sfu.ca/~cbm/aands/page_13.htm chapter 3] .)"

* S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Errata. (Several previous editions as well.)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Irrational — may refer to: *Irrationality *Irrational rhythm, *Irrational exuberance *Irrational GamesIn mathematics: *Irrational number *Proof that e is irrational *Proof that pi; is irrational *Quadratic irrational *List of integrals of irrational… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of calculus topics — This is a list of calculus topics.Note: the ordering of topics in sections is a suggestion to students.Before calculus (precalculus)*Graph of a function *Linear function *Secant *Slope *Tangent *Concavity *Finite difference *Radian *Factorial… …   Wikipedia

  • List of integration and measure theory topics — This is a list of integration and measure theory topics, by Wikipedia page.Intuitive foundations*Length *Area *Volume *Probability *Moving averageRiemann integral*Riemann sum *Riemann Stieltjes integral *Bounded variation *Jordan contentImproper… …   Wikipedia

  • List of exponential topics — This is a list of exponential topics, by Wikipedia page. See also list of logarithm topics. *Accelerating change *Artin Hasse exponential *Bacterial growth *Baker Campbell Hausdorff formula *Cell growth *Barometric formula *Basic infection number …   Wikipedia

  • Lists of integrals — See the following pages for lists of integrals:* List of integrals of rational functions * List of integrals of irrational functions * List of integrals of trigonometric functions * List of integrals of inverse trigonometric functions * List of… …   Wikipedia

  • List of real analysis topics — This is a list of articles that are considered real analysis topics. Contents 1 General topics 1.1 Limits 1.2 Sequences and Series 1.2.1 Summation Methods …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • Lists of mathematics topics — This article itemizes the various lists of mathematics topics. Some of these lists link to hundreds of articles; some link only to a few. The extremely long list of mathematics articles contains all mathematical articles in alphabetical order.… …   Wikipedia

  • Sine — For other uses, see Sine (disambiguation). Sine Basic features Parity odd Domain ( ∞,∞) Codomain [ 1,1] P …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”