Colin de Verdière graph invariant

Colin de Verdière graph invariant

Colin de Verdière's invariant is a graph parameter μ(G) for any graph G introduced by Yves Colin de Verdière in 1990. It was motivated by the study of the maximum multiplicity of the second eigenvalue of certain Schrödinger operators.[1]

Contents

Definition

Let G = (V,E) be a loopless simple graph. Assume without loss of generality that V=\{1,\dots,n\}. Then μ(G) is the largest corank of any matrix M=(M_{i,j})\in\mathbb{R}^{(n)} such that:

  • (M1) for all i,j with i\neq j: Mi,j < 0 if i and j are adjacent, and Mi,j = 0 if i and j are nonadjacent;
  • (M2) M has exactly one negative eigenvalue, of multiplicity 1;
  • (M3) there is no nonzero matrix X=(X_{i,j})\in\mathbb{R}^{(n)} such that MX = 0 and such that Xi,j = 0 whenever i = j or M_{i,j}\neq 0.[2][1]

Characterization of known graph families

Several well-known families of graphs can be characterized in terms of their Colin de Verdière invariants:

  • μ ≤ 0 if and only if G has no edges;[1][2]
  • μ ≤ 1 if and only if G is a linear forest (disjoint union of paths);[1][3]
  • μ ≤ 2 if and only if G is outerplanar;[1][2]
  • μ ≤ 3 if and only if G is planar;[1][2]
  • μ ≤ 4 if and only if G is linklessly embeddable graph[1][4]

These same families of graphs also show up in connections between the Colin de Verdière invariant of a graph and the structure of its complement graph:

  • If the complement of an n-vertex graph is a linear forest, then μ ≥ n − 3;[1][5]
  • If the complement of an n-vertex graph is outerplanar, then μ ≥ n − 4;[1][5]
  • If the complement of an n-vertex graph is planar, then μ ≥ n − 5.[1][5]

Graph minors

A minor of a graph is another graph formed from it by contracting edges and by deleting edges and vertices. The Colin de Verdière invariant is minor-monotone, meaning that taking a minor of a graph can only decrease or leave unchanged its invariant:

If H is a minor of G then \mu(H)\leq\mu(G).[2]

By the Robertson–Seymour theorem, for every k there exists a finite set H of graphs such that the graphs with invariant at most k are the same as the graphs that do not have any member of H as a minor. Colin de Verdière (1990) lists these sets of forbidden minors for k ≤ 3; for k = 4 the set of forbidden minors consists of the seven graphs in the Petersen family, due to the two characterizations of the linklessly embeddable graphs as the graphs with μ ≤ 4 and as the graphs with no Petersen family minor.[4]

Chromatic number

Colin de Verdière (1990) conjectured that any graph with Colin de Verdière invariant μ may be colored with at most μ + 1 colors. For instance, the linear forests have invariant 1, and can be 2-colored; the outerplanar graphs have invariant two, and can be 3-colored; the planar graphs have invariant 3, and (by the four color theorem) can be 4-colored.

For graphs with Colin de Verdière invariant at most four, the conjecture remains true; these are the linklessly embeddable graphs, and the fact that they have chromatic number at most five is a consequence of a proof by Robertson, Seymour & Thomas (1993) of the Hadwiger conjecture for K6-minor-free graphs.

Other properties

If a graph has crossing number k, it has Colin de Verdière invariant at most k + 3. For instance, the two Kuratowski graphs K5 and K3,3 can both be drawn with a single crossing, and have Colin de Verdière invariant at most four.[2]

Notes

  1. ^ a b c d e f g h i j van der Holst, Lovász & Schrijver (1999).
  2. ^ a b c d e f Colin de Verdière (1990).
  3. ^ Colin de Verdière (1990) does not state this case explicitly, but it follows from his characterization of these graphs as the graphs with no triangle graph or claw minor.
  4. ^ a b Lovász & Schrijver (1998).
  5. ^ a b c Kotlov, Lovász & Vempala (1997).

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Yves Colin de Verdière — Nationality  France Fields …   Wikipedia

  • Colin de Verdiere — Yves Colin de Verdière ist ein französischer Mathematiker, der sich mit Differentialgeometrie, Analysis, Graphentheorie und mathematischer Physik beschäftigt. Colin de Verdière studierte an der École normale supérieure und promovierte 1973 bei… …   Deutsch Wikipedia

  • Colin de Verdière — Yves Colin de Verdière ist ein französischer Mathematiker, der sich mit Differentialgeometrie, Analysis, Graphentheorie und mathematischer Physik beschäftigt. Colin de Verdière studierte an der École normale supérieure und promovierte 1973 bei… …   Deutsch Wikipedia

  • Yves Colin de Verdiere — Yves Colin de Verdière ist ein französischer Mathematiker, der sich mit Differentialgeometrie, Analysis, Graphentheorie und mathematischer Physik beschäftigt. Colin de Verdière studierte an der École normale supérieure und promovierte 1973 bei… …   Deutsch Wikipedia

  • Yves Colin de Verdière — ist ein französischer Mathematiker, der sich mit Differentialgeometrie, Analysis, Graphentheorie und mathematischer Physik beschäftigt. Colin de Verdière studierte an der École normale supérieure und promovierte 1973 bei Marcel Berger an der… …   Deutsch Wikipedia

  • Planar graph — Example graphs Planar Nonplanar Butterfly graph K5 The complete graph K4 …   Wikipedia

  • Outerplanar graph — A maximal outerplanar graph and its 3 coloring. In graph theory, an undirected graph is an outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing.… …   Wikipedia

  • De Verdière — Yves Colin de Verdière ist ein französischer Mathematiker, der sich mit Differentialgeometrie, Analysis, Graphentheorie und mathematischer Physik beschäftigt. Colin de Verdière studierte an der École normale supérieure und promovierte 1973 bei… …   Deutsch Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Robertson–Seymour theorem — In graph theory, the Robertson–Seymour theorem (also called the graph minor theorem[1]) states that the undirected graphs, partially ordered by the graph minor relationship, form a well quasi ordering.[2] Equivalently, every family of graphs that …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”