Chemical laser

Chemical laser

A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can achieve continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.

Common examples of chemical lasers are the chemical oxygen iodine laser (COIL), all gas-phase iodine laser (AGIL), and the hydrogen fluoride laser and deuterium fluoride laser, both operating in the mid-infrared region. There is also a edit] Origin of the CW chemical HF/DF laser

The possibility of the creation of infrared lasers based on the vibrationally excited products of a chemical reaction was first proposed by J. C. Polanyi in 1961. A pulsed chemical laser was demonstrated by Jerome V. V. Kasper and George C. Pimentel jn 1965.[1] First, hydrogen chloride was pumped optically so vigorously that the molecule disassociated and then re-combined, leaving it in an excited state suitable for a laser. Then hydrogen fluoride and deuterium fluoride were demonstrated. Pimentel went on to explore a DF - CO2 transfer laser. Although this work did not produce a purely chemical continuous wave laser, it paved the way by showing the viability of the chemical reaction as a pumping mechanism for a chemical laser. Pimentel was awarded a patent for a scalable overtone HF laser (United States Patent 4,760,582) in 1971.

The continuous wave (CW) chemical HF laser was first demonstrated in 1969,[2] and subsequently patented,[3] by researchers at The Aerospace Corporation in El Segundo, California. [1] . This device used the mixing of adjacent streams of H2 and F, within an optical cavity, to create vibrationally excited HF which lased. The atomic fluorine was provided by dissociation of SF6 gas using a DC electrical discharge. Later work at US Army, US Air Force, and US Navy contractor organizations (e.g. TRW) used a chemical reaction to provide the atomic fluorine, a concept included in the patent disclosure of Ref. 3. The latter configuration obviated the need for electrical power and led to the development of high power lasers for military applications.

The analysis of the HF laser performance is complicated due to the need to simultaneously consider the fluid dynamic mixing of adjacent supersonic streams, multiple non equilibrium chemical reactions and the interaction of the gain medium with the optical cavity. The researchers at The Aerospace Corporation developed the first exact analytic (flame sheet) solution,[4] the first numerical computer code solution[5] and the first simplified model[6] describing CW HF chemical laser performance.

Chemical lasers stimulated the use of wave-optics calculations for resonator analysis. This work was pioneered by E. A. Sziklas (Pratt & Whitney Aircraft) and A. E. Siegman (Stanford University.) An example of an early paper on this subject is E. A. Sziklas and A. E. Siegman, "Mode calculations in unstable resonator with flowing saturable gain. II. Fast Fourier transform method," Appl. Opt., vol. 14, pp. 1873–1889, August 1975. Part I of this was a companion paper that dealt with Hermite-Gaussian Expansion and has received little use compared with the Fourier Transform method which has now become a standard tool at United Technologies (SOQ), Lockheed-Martin (LMWOC), SAIC (ACS), Boeing (OSSIM), tOSC, MZA (Wave Train), and OPCI. Most of these companies competed for contracts to build HF and DF lasers for DARPA, the U.S. Air Force, the U.S. Army, or the U.S. Navy throughout the 1970s and 1980s. General Electric and Pratt & Whitney dropped out of the competition in the early 1980s leaving the field to Rocketdyne (now ironically part of Pratt & Whitney - although the laser organization remains today with Boeing) and TRW (now part of Northrop Grumman.)

Comprehensive chemical laser models were developed at SAIC by R. A. Wade, at TRW by D. Bullock, and at Rocketdyne by D. A. Holmes. Of these, perhaps the most sophisticated was the CROQ code at TRW, outpacing the early work at Aerospace Corporation.

Performance

The early analytical models coupled with chemical rate studies[7] led to the design of efficient experimental CW HF laser devices at The Aerospace Corporation (D. J. Spencer, H. Mirels, D. A. Durran, "Performance of cw HF Chemical Laser with N2 or He Diluent", J. Appl. Phys., Vol. 43, No. 3, March 1972). Power levels up to 10 kW were achieved. DF lasing was obtained by the substitution of D2 for H2.

The TRW Systems Group in Redondo Beach, California, subsequently received US Air Force contracts to build higher power CW HF/DF lasers. Using a scaled-up version of an Aerospace Corporation design, TRW achieved 100 kW power levels. General Electric, Pratt & Whitney, & Rocketdyne built various chemical lasers on company funds in anticipation of receiving DoD contracts to build even larger lasers. Only Rocketdyne received contracts of sufficient dollar amounts to continue competing with TRW. TRW produced the MIRACL device for the U.S. Navy that achieved megawatt power levels. The latter is believed to be the highest power continuous laser, of any type, developed to date (2007).

TRW also produced a cylindrical chemical laser (the Alpha laser) for DARPA, which had the advantage, at least on paper, of being scalable to even larger powers. However, by 1990, the interest in chemical lasers had shifted toward shorter wavelengths, and the chemical oxygen-iodine laser (COIL) gained the most interest, producing radiation at 1.315 μm. There is a further advantage that the COIL laser generally produces single wavelength radiation, which is very helpful for forming a very well focused beam. This type of COIL laser is used today in the ABL (Airborne Laser, the laser itself being built by Northrop Grumman) and in the ATL (Advanced Tactical Laser) produced by Boeing. Meanwhile, a lower power HF laser was used for the THEL (Tactical High Energy Laser) built in the late 1990s for the Israeli Ministry of Defense in cooperation with the U.S. Army SMDC. It holds the distinction of being the only fielded high energy laser to demonstrate effectiveness in fairly realistic tests against rockets and artillery. The MIRACL laser has demonstrated effectiveness against certain targets flown in front of it at White Sands Missile Range, but it is not configured for actual service as a fielded weapon. This may soon change with ABL and ATL, if current plans and funding hold out.

References

  1. ^ JVV Kasper and GC Pimentel, Phys Rev Letters 14, 352 (1965) HCl chemical laser, cited in some later reviews as the first chemical laser.
  2. ^ D. J. Spencer, T. A. Jacobs, H. Mirels and R. W. F. Gross, “ Continuous-Wave Chemical Laser,” International Journal of Chemical Kinetics, Vol. 1, No. 5, September 1969, pp. 493-494.
  3. ^ D. J. Spencer, H. Mirels, T. A. Jacobs and R. W. F. Gross, “Continuous-Wave Chemical Laser,” US Patent No. 3,688,215, Aug. 29, 1972.
  4. ^ R. Hofland and H. Mirels, “Flame Sheet Analysis of CW Diffusion Type Chemical Laser. 1 Uncoupled Radiation,” AIAA Journal, Vol. 10. No. 4, April 1972, pp. 420-428.
  5. ^ W. S. King and H. Mirels, “ Numerical Study of a Diffusion Type Chemical Laser,” AIAA Journal, Vol. 10, No. 12, Dec. 1972, pp. 1647-1654.
  6. ^ H. Mirels, R. Hofland and W. S. King, “ Simplified Model of CW Diffusion Type Chemical Laser,” 10th AIAA Aerospace Sciences Meeting, San Diego, Calif.,January 17–19, 1972. (Also AIAA Journal, Vol. 11. No. 2, February 1973, pp. 156–184.)
  7. ^ N. Cohen, "A Review of Rate Coefficients for Reactions in the H2-F2 Laser System," TR-0172(2779)-2 Sept 1971. The Aerospace Corp., El Segundo, Ca.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • chemical laser — chemical laser, a laser that uses the energy of a chemical reaction instead of electrical energy: »Chemical lasers differ from ordinary lasers in that molecules with abnormally large amounts of energy are produced by particular chemical reactions …   Useful english dictionary

  • chemical laser — cheminis lazeris statusas T sritis fizika atitikmenys: angl. chemical laser vok. chemischer Laser, m rus. химический лазер, m pranc. laser chimique, m …   Fizikos terminų žodynas

  • chemical laser — cheminis lazeris statusas T sritis chemija apibrėžtis Lazeris, kuriame cheminė energija paverčiama šviesos bangomis. atitikmenys: angl. chemical laser rus. химический лазер …   Chemijos terminų aiškinamasis žodynas

  • chemical laser — noun any laser that obtains its energy from a chemical reaction …   Wiktionary

  • Chemical oxygen iodine laser — Chemical oxygen iodine laser, or COIL, is an infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode[citation needed]. Its output wavelength… …   Wikipedia

  • Laser pumping — is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles… …   Wikipedia

  • Laser — For other uses, see Laser (disambiguation). United States Air Force laser experiment …   Wikipedia

  • Laser applications — There are many scientific, military, medical and commercial laser applications which have been developed since the invention of the laser in the 1958. The coherency, high monochromaticity, and ability to reach extremely high powers are all… …   Wikipedia

  • laser chimique — cheminis lazeris statusas T sritis fizika atitikmenys: angl. chemical laser vok. chemischer Laser, m rus. химический лазер, m pranc. laser chimique, m …   Fizikos terminų žodynas

  • Laser-induced breakdown spectroscopy — (LIBS) is a type of atomic emission spectroscopy which utilises a highly energetic laser pulse as the excitation source. LIBS can analyse any matter regardless of its physical state, be it solid, liquid or gas. Even slurries, aerosols, gels, and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”