- Gibbs measure
-
In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is the measure associated with the Boltzmann distribution, and generalizes the notion of the canonical ensemble. Importantly, when the energy function can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics, such as Hopfield networks, Markov networks, and Markov logic networks. In addition, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy; thus, the Gibbs measure underlies maximum entropy methods and the algorithms derived therefrom.
The measure gives the probability of the system X being in state x (equivalently, of the random variable X having value x) as
Here, E(x) is a function from the space of states to the real numbers; in physics applications, E(x) is interpreted as the energy of the configuration x. The parameter β is a free parameter; in physics, it is the inverse temperature. The normalizing constant Z(β) is the partition function.
Contents
Markov property
An example of the Markov property of the Gibbs measure can be seen in the Ising model. Here, the probability of a given spin σk being in state s is, in principle, dependent on all other spins in the model; thus one writes
for this probability. However, the interactions in the Ising model are nearest-neighbor interactions, and thus, one actually has
where Nk is the set of nearest neighbors of site k. That is, the probability at site k depends only on the nearest neighbors. This last equation is in the form of a Markov-type statistical independence. Measures with this property are sometimes called Markov random fields. More strongly, the converse is also true: any probability distribution having the Markov property can be represented with the Gibbs measure, given an appropriate energy function;[1] this is the Hammersley–Clifford theorem.
Gibbs measure on lattices
What follows is a formal definition for the special case of a random field on a group lattice. The idea of a Gibbs measure is, however, much more general than this.
The definition of a Gibbs random field on a lattice requires some terminology:
- The lattice: A countable set .
- The single-spin space: A probability space .
- The configuration space: , where and .
- Given a configuration and a subset , the restriction of ω to Λ is . If and , then the configuration is the configuration whose restrictions to Λ1 and Λ2 are and , respectively. These will be used to define cylinder sets, below.
- The set of all finite subsets of .
- For each subset , is the σ-algebra generated by the family of functions , where σ(t)(ω) = ω(t). This sigma-algebra is just the algebra of cylinder sets on the lattice.
- The potential: A family of functions such that
- For each , ΦA is -measurable.
- For all and , the series exists.
- The Hamiltonian in with boundary conditions , for the potential Φ, is defined by
, - where .
- The partition function in with boundary conditions and inverse temperature (for the potential Φ and λ) is defined by
. - A potential Φ is λ-admissible if is finite for all , and β > 0.
A probability measure μ on is a Gibbs measure for a λ-admissible potential Φ if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equations
, - for all and .
An example
To help understand the above definitions, here are the corresponding quantities in the important example of the Ising model with nearest-neighbour interactions (coupling constant J) and a magnetic field (h), on :
- The lattice is simply .
- The single-spin space is S = { − 1,1}.
- The potential is given by
See also
References
- ^ Ross Kindermann and J. Laurie Snell, Markov Random Fields and Their Applications (1980) American Mathematical Society, ISBN 0-8218-5001-6
- Georgii, H.-O. "Gibbs measures and phase transitions", de Gruyter, Berlin, 1988.
Categories:- Measures (measure theory)
- Statistical mechanics
Wikimedia Foundation. 2010.