Application of tensor theory in physics

Application of tensor theory in physics

Tensors are used in various parts of physics, both as abstract constructs in mathematical physics and for describing relations between quantities represented by matrices.

Common applications

* Electromagnetic tensor (or Faraday's tensor) in electromagnetism
* Finite deformation tensors for describing deformations and strain tensor for strain in continuum mechanics
* Permittivity and electric susceptibility are tensors in anisotropic media
* Stress-energy tensor in general relativity, used to represent momentum fluxes
* Spherical tensor operators are the eigenfunctions of the quantum angular momentum operator in spherical coordinates

See also

* Application of tensor theory in engineering
* Mathematical physics
* Mathematics of general relativity
* Tensor


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Application of tensor theory in engineering — Tensors are frequently used in engineering to describe measured quantities. Common applications * Measuring deformations (finite deformation tensors) and strain (strain tensor) in continuum mechanics * Representing diffusion as a tensor in… …   Wikipedia

  • Glossary of tensor theory — This is a glossary of tensor theory. For expositions of tensor theory from different points of view, see:* Tensor * Classical treatment of tensors * Tensor (intrinsic definition) * Intermediate treatment of tensors * Application of tensor theory… …   Wikipedia

  • Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… …   Wikipedia

  • Electromagnetic tensor — Electromagnetism Electricity · …   Wikipedia

  • Tensor contraction — In multilinear algebra, a tensor contraction is an operation on one or more tensors that arises from the natural pairing of a finite dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components… …   Wikipedia

  • Physics — (Greek: physis φύσις), in everyday terms, is the science of matter [R. P. Feynman, R. B. Leighton, M. Sands (1963), The Feynman Lectures on Physics , ISBN 0 201 02116 1 Hard cover. p.1 1 Feynman begins with the atomic hypothesis.] and its motion …   Wikipedia

  • List of physics topics A-E — NOTOC A B C D E F G H I J K L M N O P Q R S T U V W X Y ZList of physics topics F L >>AAb Am* Abbe number * Abbe, Ernst * Absolute zero * Accelerating universe * Acceleration * Acoustic theory * Action (physics) * Active laser medium * Adiabatic… …   Wikipedia

  • Tensor field — In mathematics, physics and engineering, a tensor field is a very general concept of variable geometric quantity. It is used in differential geometry and the theory of manifolds, in algebraic geometry, in general relativity, in the analysis of… …   Wikipedia

  • Gauge theory — For a generally accessible and less technical introduction to the topic, see Introduction to gauge theory. In physics, a gauge theory is a type of field theory in which the Lagrangian is invariant under a continuous group of local transformations …   Wikipedia

  • String theory — This article is about the branch of theoretical physics. For other uses, see String theory (disambiguation). String theory …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”