- Three jet event
-
In particle physics, a three-jet event is an event with many particles in final state that appear to be clustered in three jets. A single jet consists of particles that fly off in roughly the same direction. One can draw three cones from the interaction point, corresponding to the jets, and most particles created in the reaction will appear to belong to one of these cones. These events are currently the most direct available evidence for the existence of gluons, and were first observed by the TASSO experiment at the PETRA accelerator at the DESY laboratory.[1]
Since jets are ordinarily produced when quarks hadronize, and quarks are produced only in pairs, an additional particle is required to explain events containing an odd number of jets. Quantum chromodynamics indicates that this particle is a particularly energetic gluon, radiated by one of the quarks, which hadronizes much as a quark does.
A particularly striking feature of these events, which were first observed at DESY and studied in great detail by experiments at the LEP collider, is their consistency with the Lund string model. The model indicates that "strings" of low-energy gluons will form most strongly between the quarks and the high-energy gluons, and that the "breaking" of these strings into new quark–antiquark pairs (part of the hadronization process) will result in some "stray" hadrons between the jets (and in the same plane). Since the quark-gluon interaction is stronger than the quark-quark interaction, such hadrons will be observed much less frequently between the two quark jets. As a result, the model predicts that stray hadrons will not appear between two of the jets, but will appear between each of them and the third. This is precisely what is observed.
As a check, physicists have also considered events with a photon produced in a similar process. In this case, the quark–quark interaction is the only strong interaction, so a "string" forms between the two quarks, and stray hadrons now appear between the corresponding jets. This difference between the three-jet events and the two-jet events with a high-energy photon, which indicates that the third jet has unique properties under the strong interaction, can only be explained by the original particle in that jet being a gluon.
The line of reasoning is illustrated below. Please note that the drawings are not Feynman diagrams; they are "snapshots" in time and show two spatial dimensions.
-
As a result, three jets (cones) form, with extra hadrons (arrows) found where the strings formed.
-
For comparison, physicists looked at events with two quarks and a photon (wavy line). Here the string forms only between quarks.
References
- ^ R. Brandelik et al. (TASSO collaboration) (1979). "Evidence for Planar Events in e+e- Annihilation at High Energies". Phys. Lett. B 86: 243–249. Bibcode 1979PhLB...86..243B. doi:10.1016/0370-2693(79)90830-X.
Further reading
- A. Ali, G. Kramer (2011). "JETS and QCD: A historical review of the discovery of the quark and gluon jets and its impact on QCD". European Physical Journal H. doi:10.1140/epjh/e2011-10047-1.
- P. Söding (2010). "On the discovery of the gluon". European Physical Journal H 35 (1): 3–28. Bibcode 2010EPJH...35....3S. doi:10.1140/epjh/e2010-00002-5.
- W. Bartel et al. (JADE Collaboration) (1980). "Observation of planar three-jet events in e+e− annihilation and evidence for gluon bremsstrahlung". Physics Letters B 91: 142. Bibcode 1980PhLB...91..142B. doi:10.1016/0370-2693(80)90680-2.
- W. Bartel et al. (JADE Collaboration) (1981). "Experimental study of jets in electron-positron annihilation". Physics Letters B 101: 129. Bibcode 1981PhLB..101..129B. doi:10.1016/0370-2693(81)90505-0.
- D. Barber et al. (MARK J Collaboration) (1979). "Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA". Physical Review Letters 43: 830. Bibcode 1979PhRvL..43..830B. doi:10.1103/PhysRevLett.43.830.
- B. Adeva et al. (MARK J Collaboration) (1983). "Model-Independent Second-Order Determination of the Strong-Coupling Constant αs". Physical Review Letters 50: 2051. Bibcode 1983PhRvL..50.2051A. doi:10.1103/PhysRevLett.50.2051.
- C. Berger et al. (PLUTO Collaboration) (1979). "Evidence for gluon bremsstrahlung in e+e− annihilations at high energies". Physics Letters B 86: 418. Bibcode 1979PhLB...86..418B. doi:10.1016/0370-2693(79)90869-4.
- C. Berger et al. (PLUTO Collaboration) (1985). "A study of energy-energy correlations in e+e− annihilations at √s = 34.6 GeV". Zeitschrift für Physik C 28: 365. Bibcode 1985ZPhyC..28..365B. doi:10.1007/BF01413599.
- R. Brandelik et al. (TASSO Collaboration) (1979). "Evidence for planar events in e+e− annihilation at high energies". Physics Letters B 86: 243. Bibcode 1979PhLB...86..243B. doi:10.1016/0370-2693(79)90830-X.
- R. Brandelik et al. (TASSO Collaboration) (1980). "Evidence for a spin-1 gluon in three-jet events". Physics Letters B 97: 453. Bibcode 1980PhLB...97..453B. doi:10.1016/0370-2693(80)90639-5.
Categories:- Gluons
- Quantum chromodynamics
Wikimedia Foundation. 2010.