Oscillatory integral operator

Oscillatory integral operator

In mathematics, in the field of harmonic analysis, an oscillatory integral operator is an integral operator of the form


T_\lambda u(x)=\int_{\R^n}e^{i\lambda S(x,y)}a(x,y)u(y)\,dy, \qquad x\in\R^m,
\quad y\in\R^n,

where the function S(x,y)\, is called the phase of the operator and the function a(x,y)\, is called the symbol of the operator. \lambda\, is a parameter. One often considers S(x,y)\, to be real-valued and smooth, and a(x,y)\, smooth and compactly supported. Usually one is interested in the behavior of T_\lambda\, for large values of \lambda\,.

Oscillatory integral operators often appear in many fields of mathematics (analysis, partial differential equations, integral geometry, number theory) and in physics. Properties of oscillatory integral operators have been studied by E. Stein[1] and his school.

Hörmander's theorem

The following bound on the L^2\to L^2 action of oscillatory integral operators (or L^2\to L^2 operator norm) was obtained by Lars Hörmander in his paper on Fourier integral operators:[2]

Assume that x,\,y\in\R^n, n\ge 1. Let S(x,y)\, be real-valued and smooth, and let a(x,y)\, be smooth and compactly supported. If \mathop{\rm det}_{j,k} \frac{\partial^2 S}{\partial x_j \partial y_k}(x,y)\ne 0 everywhere on the support of a(x,y)\,, then there is a constant C\, such that T_\lambda\,, which is initially defined on smooth functions, extends to a continuous operator from L^2(\R^n)\, to L^2(\R^n)\,, with the norm bounded by C \lambda^{-n/2} \, , for any \lambda\ge 1\,:


||T_\lambda||_{L^2(\R^n)\to L^2(\R^n)}\le C\lambda^{-n/2}.

References

  1. ^ Elias Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, 1993. ISBN 0-691-03216-5
  2. ^ L. Hörmander Fourier integral operators, Acta Math. 127 (1971), 79–183. doi 10.1007/BF02392052, http://www.springerlink.com/content/t202410l4v37r13m/fulltext.pdf

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Oscillatory integral — In mathematical analysis an oscillatory integral is a type of distribution. Oscillatory integrals make rigorous many arguments that, on a naive level, appear to use divergent integrals. It is possible to represent approximate solution operators… …   Wikipedia

  • Path integral formulation — This article is about a formulation of quantum mechanics. For integrals along a path, also known as line or contour integrals, see line integral. The path integral formulation of quantum mechanics is a description of quantum theory which… …   Wikipedia

  • Oszillierendes Integral — Ein oszillierendes Integral ist ein Objekt aus dem mathematischen Teilgebiet der Funktionalanalysis beziehungsweise aus der mikrolokalen Analysis. Es ist ein verallgemeinerter Integralbegriff, welcher insbesondere im Bereich der… …   Deutsch Wikipedia

  • List of Fourier analysis topics — This is an alphabetical list of Fourier analysis topics. See also the list of Fourier related transforms, and the list of harmonic analysis topics. Almost periodic function ATS theorem Autocorrelation Autocovariance Banach algebra Bessel function …   Wikipedia

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • Feynman diagram — The Wick s expansion of the integrand gives (among others) the following termNarpsi(x)gamma^mupsi(x)arpsi(x )gamma^ upsi(x )underline{A mu(x)A u(x )};,whereunderline{A mu(x)A u(x )}=int{d^4pover(2pi)^4}{ig {mu u}over k^2+i0}e^{ k(x x )}is the… …   Wikipedia

  • Schrödinger equation — For a more general introduction to the topic, please see Introduction to quantum mechanics. Quantum mechanics …   Wikipedia

  • Integraloperator — Ein linearer Integraloperator ist ein mathematisches Objekt aus der Funktionalanalysis. Dieses Objekt ist ein linearer Operator, der mit einer bestimmten Integralschreibweise mit einem Integralkern dargestellt werden kann. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Carl Eckart — Carl Henry Eckart (May 4, 1902 in St. Louis, Missouri ndash; October 23, 1973 in La Jolla, California) was an American physicist, physical oceanographer, geophysicist, and administrator. He co developed the Wigner Eckart theorem and is also known …   Wikipedia

  • Mild-slope equation — Simulation of wave penetration involving diffraction and refraction into Tedious Creek, Maryland, using CGWAVE (which solves the mild slope equation). In fluid dynamics, the mild slope equation describes the combined effects of diffraction and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”