Integral geometry

Integral geometry

In mathematics, the term "integral geometry" is used in two ways, which, although related, imply different views of the content of the subject.

Cases

The more traditional usage is that of Santalo and Blaschke. It follows from the classic theorem of Crofton expressing the length of a plane curve as an expectation of the number of intersections with a random line. Here the word 'random' must be interpreted as subject to correct symmetry considerations.

There is a sample space of lines, one on which the affine group of the plane acts. A probability measure is sought on this space, invariant under the symmetry group. If, as in this case, we can find a unique such invariant measure, that solves the problem of formulating accurately what 'random line' means; and expectations become integrals with respect to that measure. (Note for example that the phrase 'random chord of a circle' can be used to construct some paradoxes.)

We can therefore say that "integral geometry in the sense of Santalo", is the application of probability theory (as axiomatized by Kolmogorov) in the context of the Erlangen programme of Klein. The content of the theory is effectively that of invariant (smooth) measures on (preferably compact) homogeneous spaces of Lie groups; and the evaluation of integrals of differential forms arising.

A very celebrated case is the problem of Buffon's needle: drop a needle on a floor made of planks and calculate the probability the needle lies across a crack. Generalising, this theory is applied to various stochastic processes concerned with geometric and incidence questions.

One of the most interesting theorems in this form of integral geometry is Hadwiger's theorem.

The more recent meaning of integral geometry is that of Israel Gelfand. It deals more specifically with integral transforms, modelled on the Radon transform. Here the underlying geometrical incidence relation (points lying on lines, in Crofton's case) is seen in a freer light, as the site for an integral transform composed as "pullback onto the incidence graph" and then "push forward".


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Integral imaging — is a true auto stereo method (stereo imagery viewable without the requirement of special glasses). An integral image consists of a tremendous number of closely packed, distinct micro images, that are viewed by an observer through an array of… …   Wikipedia

  • Integral domain — In abstract algebra, an integral domain is a commutative ring that has no zero divisors,[1] and which is not the trivial ring {0}. It is usually assumed that commutative rings and integral domains have a multiplicative identity even though this… …   Wikipedia

  • Integral — This article is about the concept of integrals in calculus. For the set of numbers, see integer. For other uses, see Integral (disambiguation). A definite integral of a function can be represented as the signed area of the region bounded by its… …   Wikipedia

  • geometry — /jee om i tree/, n. 1. the branch of mathematics that deals with the deduction of the properties, measurement, and relationships of points, lines, angles, and figures in space from their defining conditions by means of certain assumed properties… …   Universalium

  • Integral calculus — Calculus Cal cu*lus, n.; pl. {Calculi}. [L, calculus. See {Calculate}, and {Calcule}.] 1. (Med.) Any solid concretion, formed in any part of the body, but most frequent in the organs that act as reservoirs, and in the passages connected with… …   The Collaborative International Dictionary of English

  • Systolic geometry — In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner, and developed by Mikhail Gromov and others, in its arithmetic, ergodic, and topological manifestations.… …   Wikipedia

  • Differential geometry — A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparallel lines. Differential geometry is a mathematical discipline that uses the techniques of differential and integral calculus, as well as… …   Wikipedia

  • Convex geometry — is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas of mathematics: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral… …   Wikipedia

  • Orbital integral — In mathematics, an orbital integral is an integral transform that generalizes the spherical mean operator to homogeneous spaces. Instead of integrating over spheres, one integrates over generalized spheres: for a homogeneous space… …   Wikipedia

  • List of geometry topics — This is list of geometry topics, by Wikipedia page.*Geometric shape covers standard terms for plane shapes *List of mathematical shapes covers all dimensions *List of differential geometry topics *List of geometers *See also list of curves, list… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”