Symbol of a differential operator
- Symbol of a differential operator
In mathematics, differential operators have symbols, which are roughly speaking the algebraic part of the terms involving the most derivatives.
Formal definition
Let be vector bundles over a closed manifold "X", and suppose
:
is a differential operator of order . In local coordinates we have
:
where all are bundle mapsdepending symmetrically on the and where we sum over the indices .This top order piece transforms as a symmetric tensor under change of coordinates, so it defines the symbol:
:
View the symbol as a homogeneous polynomial of degree in with values in .
The differential operator is elliptic if its symbol is invertible; that is for each nonzero the bundle map is invertible. It follows from the elliptic theory that has finite dimensional kernel and cokernel.
ee also
* Multiplier (Fourier analysis)
References
*Daniel S. Freed "Geometry of Dirac operators." p.8.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Pseudo-differential operator — In mathematical analysis a pseudo differential operator is an extension of the concept of differential operator. Pseudo differential operators are used extensively in the theory of partial differential equations and quantum field theory.… … Wikipedia
Operator (mathematics) — This article is about operators in mathematics. For other uses, see Operator (disambiguation). In basic mathematics, an operator is a symbol or function representing a mathematical operation. In terms of vector spaces, an operator is a mapping… … Wikipedia
operator — /op euh ray teuhr/, n. 1. a person who operates a machine, apparatus, or the like: a telegraph operator. 2. a person who operates a telephone switchboard, esp. for a telephone company. 3. a person who manages a working or industrial establishment … Universalium
Differential (Mathematik) — Historisch war der Begriff des Differentials bzw. Differenzials im 17. und 18. Jahrhundert der Kern der Entwicklung der Differentialrechnung. Ab dem 19. Jahrhundert wurde die Analysis durch Augustin Louis Cauchy und Karl Weierstrass auf der… … Deutsch Wikipedia
Nabla symbol — For other uses, see Nabla. ∇ The nabla symbol The harp, the instrument after which the nabla symbol is named Nabla is the symbol (∇) … Wikipedia
Nabla-Operator — Der Nabla Operator ist ein Operations Symbol, das in der Vektoranalysis benutzt wird, um die drei Differentialoperatoren Gradient, Divergenz und Rotation zu bezeichnen. Er wird durch das Nabla Symbol bezeichnet oder durch (im englischen… … Deutsch Wikipedia
D'Alembert operator — In special relativity, electromagnetism and wave theory, the d Alembert operator (represented by a box: ), also called the d Alembertian or the wave operator, is the Laplace operator of Minkowski space. The operator is named for French… … Wikipedia
Mathematischer Operator — Ein Operator ist eine mathematische Vorschrift (ein Kalkül), durch die man aus mathematischen Objekten neue Objekte bilden kann. Er kann eine standardisierte Funktion, oder eine Vorschrift über Funktionen sein. Anwendung finden die Operatoren bei … Deutsch Wikipedia
Fourier integral operator — The concept of Fourier integral operators stems from mathematical analysis. They have become an important tool in the theory of partial differential equations. The class of Fourier integral Operators contains differential operators as well as… … Wikipedia
Angular momentum operator — In quantum mechanics, the angular momentum operator is an operator analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic physics and other quantum problems involving rotational… … Wikipedia