- Natural logarithm of 2
-
The decimal value of the natural logarithm of 2 (sequence A002162 in OEIS) is approximately
as shown in the first line of the table below. The logarithm in other bases is obtained with the formula
The common logarithm in particular is ( A007524)
The inverse of this number is the binary logarithm of 10:
- A020862).
number approximate natural logarithm OEIS 2 0.693147180559945309417232121458 A002162 3 1.09861228866810969139524523692 A002391 4 1.38629436111989061883446424292 A016627 5 1.60943791243410037460075933323 A016628 6 1.79175946922805500081247735838 A016629 7 1.94591014905531330510535274344 A016630 8 2.07944154167983592825169636437 A016631 9 2.19722457733621938279049047384 A016632 10 2.30258509299404568401799145468 A002392 Contents
Series representations
(γ is the Euler–Mascheroni constant and ζ Riemann's zeta function).
Some Bailey–Borwein–Plouffe (BBP)-type representations fall also into this category.
Representation as integrals
(γ is the Euler–Mascheroni constant).
Other representations
The Pierce expansion is A091846
The Engel expansion is A059180
The cotangent expansion is A081785
As an infinite sum of fractions[1]:
These generalized continued fractions:
Bootstrapping other logarithms
Given a value of ln2, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers c based on their factorizations
Apart from the logarithms of 2, 3, 5 and 7 shown above, this employs
prime approximate natural logarithm OEIS 11 2.39789527279837054406194357797 A016634 13 2.56494935746153673605348744157 A016636 17 2.83321334405621608024953461787 A016640 19 2.94443897916644046000902743189 A016642 23 3.13549421592914969080675283181 A016646 29 3.36729582998647402718327203236 A016652 31 3.43398720448514624592916432454 A016654 37 3.61091791264422444436809567103 A016660 41 3.71357206670430780386676337304 A016664 43 3.76120011569356242347284251335 A016666 47 3.85014760171005858682095066977 A016670 53 3.97029191355212183414446913903 A016676 59 4.07753744390571945061605037372 A016682 61 4.11087386417331124875138910343 A016684 67 4.20469261939096605967007199636 A016690 71 4.26267987704131542132945453251 A016694 73 4.29045944114839112909210885744 A016696 79 4.36944785246702149417294554148 A016702 83 4.41884060779659792347547222329 A016706 89 4.48863636973213983831781554067 A016712 97 4.57471097850338282211672162170 A016720 In a third layer, the logarithms of rational numbers r = a / b are computed with ln r = ln a − ln b, and logarithms of roots via .
The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2i close to powers bj of other numbers b is comparatively easy, and series representations of ln b are found by coupling 2 to b with logarithmic conversions.
Example
If ps = qt + d with some small d, then ps / qt = 1 + d / qt and therefore
Selecting q = 2 represents ln p by ln2 and a series of a parameter d / qt that one wishes to keep small for quick convergence. Taking 32 = 23 + 1, for example, generates
This is actually the third line in the following table of expansions of this type:
s p t q d/qt 1 3 1 2 1 / 2 = 0.50000000... 1 3 2 2 −1 / 4 = −0.25000000... 2 3 3 2 1 / 8 = 0.12500000... 5 3 8 2 −13 / 256 = −0.05078125... 12 3 19 2 7153 / 524288 = 0.01364326... 1 5 2 2 1 / 4 = 0.25000000... 3 5 7 2 −3 / 128 = −0.02343750... 1 7 2 2 3 / 4 = 0.75000000... 1 7 3 2 −1 / 8 = −0.12500000... 5 7 14 2 423 / 16384 = 0.02581787... 1 11 3 2 3 / 8 = 0.37500000... 2 11 7 2 −7 / 128 = −0.05468750... 11 11 38 2 10433763667 / 274877906944 = 0.03795781... 1 13 3 2 5 / 8 = 0.62500000... 1 13 4 2 −3 / 16 = −0.18750000... 3 13 11 2 149 / 2048 = 0.07275391... 7 13 26 2 −4360347 / 67108864 = −0.06497423... 10 13 37 2 419538377 / 137438953472 = 0.00305254... 1 17 4 2 1 / 16 = 0.06250000... 1 19 4 2 3 / 16 = 0.18750000... 4 19 17 2 −751 / 131072 = −0.00572968... 1 23 4 2 7 / 16 = 0.43750000... 1 23 5 2 −9 / 32 = −0.28125000... 2 23 9 2 17 / 512 = 0.03320312... 1 29 4 2 13 / 16 = 0.81250000... 1 29 5 2 −3 / 32 = −0.09375000... 7 29 34 2 70007125 / 17179869184 = 0.00407495... 1 31 5 2 −1 / 32 = −0.03125000... 1 37 5 2 5 / 32 = 0.15625000... 4 37 21 2 −222991 / 2097152 = −0.10633039... 5 37 26 2 2235093 / 67108864 = 0.03330548... 1 41 5 2 9 / 32 = 0.28125000... 2 41 11 2 −367 / 2048 = −0.17919922... 3 41 16 2 3385 / 65536 = 0.05165100... 1 43 5 2 11 / 32 = 0.34375000... 2 43 11 2 −199 / 2048 = −0.09716797... 5 43 27 2 12790715 / 134217728 = 0.09529825... 7 43 38 2 −3059295837 / 274877906944 = −0.01112965... Starting from the natural logarithm of q = 10 one might use these parameters:
s p t q d/qt 10 2 3 10 3 / 125 = 0.02400000... 21 3 10 10 460353203 / 10000000000 = 0.04603532... 3 5 2 10 1 / 4 = 0.25000000... 10 5 7 10 −3 / 128 = −0.02343750... 6 7 5 10 17649 / 100000 = 0.17649000... 13 7 11 10 −3110989593 / 100000000000 = −0.03110990... 1 11 1 10 1 / 10 = 0.10000000... 1 13 1 10 3 / 10 = 0.30000000... 8 13 9 10 −184269279 / 1000000000 = −0.18426928... 9 13 10 10 604499373 / 10000000000 = 0.06044994... 1 17 1 10 7 / 10 = 0.70000000... 4 17 5 10 −16479 / 100000 = −0.16479000... 9 17 11 10 18587876497 / 100000000000 = 0.18587876... 3 19 4 10 −3141 / 10000 = −0.31410000... 4 19 5 10 30321 / 100000 = 0.30321000... 7 19 9 10 −106128261 / 1000000000 = −0.10612826... 2 23 3 10 −471 / 1000 = −0.47100000... 3 23 4 10 2167 / 10000 = 0.21670000... 2 29 3 10 −159 / 1000 = −0.15900000... 2 31 3 10 −39 / 1000 = −0.03900000... Natural logarithm of 10
The natural logarithm of 10 ( A002392) plays a role for example in computation of natural logarithms of numbers represented in the scientific notation, a mantissa multiplied by a power of 10:
By this scaling, the algorithm may reduce the logarithm of all positive real numbers to an algorithm for natural logarithms in the range .
References
- Brent, Richard P. (1976). "Fast multiple-precision evaluation of elementary functions". J. ACM 23 (2): 242–251. doi:10.1145/321941.321944. MR0395314.
- Uhler, Horace S. (1940). "Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17". Proc. Nat. Acac. Sci. U. S. A. 26: 205–212. MR0001523.
- Sweeney, Dura W. (1963). "On the computation of Euler's constant". Mathematics of Computation 17. MR0160308.
- Chamberland, Marc (2003). "Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes". Journal of Integer Sequences 6: 03.3.7. MR2046407. http://www.emis.ams.org/journals/JIS/VOL6/Chamberland/chamberland60.pdf.
- Gourévitch, Boris; Guillera Goyanes, Jesus (2007). "Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas". Applied Math. E-Notes 7: 237–246. MR2346048. http://www.math.nthu.edu.tw/~amen/2007/061028-2.pdf.
- Wu, Qiang (2003). "On the linear independence measure of logarithms of rational numbers". Mathematics of Computation 72 (242): 901–911. doi:10.1090/S0025-5718-02-01442-4.
- ^ "The Penguin's Dictionary of Curious and Interesting Numbers" by David Wells, page 29.
External links
- Weisstein, Eric W., "Natural logarithm of 2" from MathWorld.
- table of natural logarithms on PlanetMath
- Gourdon, Xavier; Sebah, Pascal. "The logarithm constant:log 2". http://numbers.computation.free.fr/Constants/Log2/log2.html.
Categories:- Numbers
- Logarithms
- Irrational numbers
Wikimedia Foundation. 2010.