Nathan Marcuvitz

Nathan Marcuvitz
Nathan Marcuvitz

Nathan Marcuvitz was professor emeritus Polytechnic Institute of NY
Born December 29, 1913(1913-12-29)
Brooklyn,NY
Died February 14, 2010(2010-02-14) (aged 96)
Naples, FL
Residence United States
Nationality American
Fields Electrical engineering, Applied Physics
Alma mater Polytechnic Institute of Brooklyn
Notable awards IEEE Heinrich Hertz Medal

Nathan Marcuvitz (b. December 29, 1913 in Brooklyn, New York, d. February 14, 2010 in Naples, FL), was an American electrical engineer, physicist, and educator who worked in the fields of microwave and electromagnetic theory.


Contents

Biography[1][2][3]

"Dr. Nathan Marcuvitz stands out clearly as the leading figure in the field of electromagnetic waves for the period of at least two decades following World War II. He was widely viewed by his colleagues as the premier electromagnetics scholar of his generation."[2]

Electromagnetic waves achieved practical fruition in the development of microwave technology and the creation of the microwave industry, with applications to radar, communications, electronic warfare, industrial and consumer electronics, and so on. Rapid progress in the development of the microwave field was made possible by the availability of accurate network descriptions of the various complicated structures employed in microwave systems. The central figure in this crucial period of the development of such network descriptions was Dr. Nathan Marcuvitz.

The crucial period in the development of the microwave field occurred during World War II, when the magnetron furnished a reliable source of electromagnetic waves and made radar feasible, but progress was initially slow because designs had employed empirical and cut-and-try procedures. What was needed were quantitative methods for characterizing the geometric structures involved and phrasing those methods in network terms. Marcuvitz headed the experimental group at the M.I.T. Radiation Laboratory, which was responsible for developing an accurate measurement set-up and a new measurement procedure for determining with great precision the network parameters of geometric discontinuities.

He also worked closely with the physicists and mathematicians responsible for the theoretical part of the systematic program, and showed them how to cast their solutions in engineering terms. As a result, the theoretical analyses were phrased in the network terms required for design, and the analytical results were compared with measurements under Marcuvitz’ direction. Since Marcuvitz played the key role in coordinating the theoretical and experimental phases, he was asked to be the author of the Waveguide Handbook (1951), which became vol. 10 of the M.I.T. Radiation Laboratory Series.

Dr. Marcuvitz is best known as an extremely able microwave field theorist, rather than an experimentalist. This transition from experimentalist to theorist was made easier because of his close association with Julian Schwinger, who some years later received a Nobel Prize for work on quantum electrodynamics. Soon after his arrival in Cambridge, MA, Marcuvitz, together with Robert Marshak, who later became President of the City College of New York, rented a house near Harvard Square. Some of the rooms were rented to others who worked at the Radiation Laboratory, and Schwinger was one of those people. This arrangement lasted for only a year, but Marcuvitz and Schwinger became good friends.

It was well known that Schwinger worked during the night and slept all day. Marcuvitz would wake him up at 7:30 P.M., and they would go to dinner. After that they would often discuss their research problems until midnight, after which Marcuvitz would go home to bed and Schwinger would begin his work.

"The key coordinating role played by Marcuvitz culminated in his classic book that he called the Waveguide Handbook, which had enormous impact on the newly developing microwave field. The Waveguide Handbook is the most important and most widely used single book in the history of the microwave field. The book not only contained the largest collection of theoretical expressions for waveguide discontinuities available anywhere, and in this respect it is still unsurpassed, but in its first three chapters, before any results for specific structures are presented, it describes, in a masterful summary, how these waveguide discontinuities can be represented rigorously in network form, how they can be measured accurately, and how they can be analyzed theoretically. This compendium volume would have been an important basic contribution at any time, but it emerged at a crucial time in the unfolding of the microwave field, and it therefore exerted a monumental impact on the field with respect to both theoretical understanding and practical design capabilities."[2]

Dr. Marcuvitz has also made many other significant contributions to electromagnetic waves. These include an explanation of the nature of leaky waves and how to calculate them, a new derivation for small aperture and small obstacle expressions, radial and spherical transmission line theories, new results for propagation through periodic structures, and so on. Some of these studies have been compiled into a comprehensive book, Radiation and Scattering of Waves (1973), coauthored with his former student, L. B. Felsen.

Most of the research projects were conducted under the aegis of the Microwave Research Institute (MRI). This institute became widely regarded internationally as the foremost research organization in the world in microwave field theory. For many years, it attracted post-doctoral researchers from around the world to spend a year or more, coming from such countries as Japan, France, U.S.S.R., Israel, Italy, England, Denmark, Sweden, Hungary, Poland, and Finland. Many of those researchers have since become famous in their own right. MRI was also well known for its series of annual symposia on topics in the forefront of the electronics field, and for the symposium proceedings volumes, 24 in all, that accompanied them.

Not only did MRI produce much important research in microwave field theory, but it also trained a whole generation of microwave engineers. The journal, MicroWaves, in an interview with many microwave engineers in 1968, asked them various questions, including from what school they received their microwave education. One of the article’s conclusions was that more microwave engineers graduated from Brooklyn Polytechnic than from any other school, and that the second was M.I.T., with only half as many microwave graduates.

Published works

Waveguide Handbook, Vol. 10, 1951,
Radiation and Scattering of Waves, 1973 (with L. Felsen)
Also numerous papers and articles.

Selected Honors and Awards

Member, National Academy of Engineering, 1978
IEEE Fellow, Heinrich Hertz Medal (Gold Medal and Monetary Award, IEEE highest recognition for electromagnetic waves), (He was the first recipient, 1989)
Microwave Career Award from the IEEE Microwave Theory and Techniques Society in 1985[4]

Guest, Soviet Academy of Sciences, 1971
Honorary Doctorate, Politecnico di Torino, 1993
Honorary Doctorate, Polytechnic University, 2000
Am. Physical Society, Sigma Xi, Tau Beta Pi, Eta Kappa Nu

Education

B.E.E., Polytechnic Institute Brooklyn, 1935
M.E.E., Polytechnic Institute Brooklyn, 1941
D.E.E., Polytechnic Institute Brooklyn, 1947
Laurea Honoris Causa, Politecnico Di Torino, 1993
Doctor in Engineering (hon.), Polytechnic University, 2000

Career

Engineer RCA Laboratories, 1936-40
Research Associate. Radiation Laboratory, Massachusetts Institute Technology, 1941-46
Assistant Professor Electrical Engineering Polytechnic Institute Brooklyn, 1946–49, assoiate professor, 1949–51, professor, 1951-65
Director Polytechnic Institute Brooklyn (Microwave Research Institute), 1957-61
Vice President Research, Acting Dean Polytechnic Institute Brooklyn (Graduate Center), 1961–63, Professor Electrophysics, 1961–66, Dean Research, Dean, 1964-65
Assistant Director Defense Research and Engineering Department Defense, Washington, 1963-64
Professor Applied Physics New York University, 1966-73
Visiting Professor Harvard University, spring 1971
Professor Electrophysics Polytechnic Institute New York, 1973—, professor emeritus, 1978—

Family

Son of Samuel and Rebecca M.(Feiner); Married Muriel Spanier, June 30, 1946; children – Andrew, Karen (Levy).

References

  1. ^ Portions of this section originally contributed by Arthur A. Oliner were later incorporated by him into a more detailed article that was published in IEEE Microwave Magazine December 2010.
  2. ^ a b c ©2010 IEEE. Portions reprinted, with permission, from A. Oliner, "Transitions. Dr. Nathan Marcuvitz", IEEE Microwave Magazine, Dec. 2010, pg. 120, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05590341.
  3. ^ A. A. Oliner, "Historical Perspectives on Microwave Field Theory", IEEE Transaction on Microwave Theory and Techniques, Vol. MTT-32, No. 9, September 1984, https://www.ecs.umass.edu/ece/ece584/oliner.pdf
  4. ^ "Past Awardees: Microwave Career Award". IEEE Microwave Theory and Techniques Society. http://www.mtt.org/past-awardees-microwave-career-award.html. Retrieved November 22, 2011 (2011-11-22). 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Weber Research Institute — The Weber Research Institute (known prior to 1985 as the Microwave Research Institute) is a research group at the Polytechnic Institute of New York University. The institute s research focuses on electromagnetics, including electromagnetic,… …   Wikipedia

  • IEEE Heinrich Hertz Medal — The IEEE Heinrich Hertz Medal is a science award presented by the Institute of Electrical and Electronics Engineers for outstanding achievements in the field of electromagnetic waves. The medal is named in honour of German physicist Heinrich… …   Wikipedia

  • telecommunications media — Introduction       equipment and systems metal wire, terrestrial and satellite radio, and optical fibre employed in the transmission of electromagnetic signals. Transmission media and the problem of signal degradation       Every… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”