Montgomery's pair correlation conjecture
- Montgomery's pair correlation conjecture
-
In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery (1973) that the pair correlation between pairs of zeros of the Riemann zeta function (normalized to have unit average spacing) is
which, as Freeman Dyson pointed out to him, is the same as the pair correlation function of random Hermitian matrices. Informally, this means that the chance of finding a zero in a very short interval of length 2πL/log(T) at a distance 2πu/log(T) from a zero 1/2+iT is about L times the expression above. (The factor 2π/log(T) is a normalization factor that can be thought of informally as the average spacing between zeros with imaginary part about T.) Andrew Odlyzko (1987) showed that the conjecture was supported by large-scale computer calculations of the zeros. The conjecture has been extended to correlations of more than 2 zeros, and also to zeta functions of automorphic representations (Rudnick & Sarnak 1996).
Montgomery was studying the Fourier transform F(x) of the pair correlation function, and showed (assuming the Riemann hypothesis) that it was equal to |x| for |x|<1. His methods were unable to determine it for |x|≥1, but he conjectured that it was equal to 1 for these x, which implies that the pair correlation function is as above.
References
- Katz, Nicholas M.; Sarnak, Peter (1999), "Zeroes of zeta functions and symmetry", American Mathematical Society. Bulletin. New Series 36 (1): 1–26, doi:10.1090/S0273-0979-99-00766-1, ISSN 0002-9904, MR1640151, http://www.ams.org/bull/1999-36-01/S0273-0979-99-00766-1/home.html
- Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193, MR0337821
- Odlyzko, A. M. (1987), "On the distribution of spacings between zeros of the zeta function", Mathematics of Computation (American Mathematical Society) 48 (177): 273–308, doi:10.2307/2007890, ISSN 0025-5718, JSTOR 2007890, MR866115
- Rudnick, Zeév; Sarnak, Peter (1996), "Zeros of principal L-functions and random matrix theory", Duke Mathematical Journal 81 (2): 269–322, doi:10.1215/S0012-7094-96-08115-6, ISSN 0012-7094, MR1395406, http://projecteuclid.org/euclid.dmj/1077245671
Wikimedia Foundation.
2010.
Look at other dictionaries:
Hilbert–Pólya conjecture — In mathematics, the Hilbert–Pólya conjecture is a possible approach to the Riemann hypothesis, by means of spectral theory.Initial hunchesDavid Hilbert and George Pólya speculated that real number values of t such that : frac12 + it is a zero of… … Wikipedia
Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 … Wikipedia
Histoire de la fonction zêta de Riemann — En mathématiques, la fonction zêta de Riemann est définie comme la somme d une série particulière, dont les applications à la théorie des nombres et en particulier à l étude des nombres premiers se sont avérées essentielles. Cet article présente… … Wikipédia en Français
Analytic number theory — In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve number theoretical problems. [Page 7 of Apostol 1976] It is often said to have begun with Dirichlet s introduction of… … Wikipedia
Nina Snaith — Nina Claire Snaith is a British mathematician at the University of Bristol working in random matrix theory and quantum chaos. In 1998, she and her then adviser Jon Keating conjectured a value for the leading coefficient of the asymptotics of the… … Wikipedia
Histoire De La Fonction Zeta De Riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… … Wikipédia en Français
Histoire de la fonction Zeta de Riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… … Wikipédia en Français
Histoire de la fonction zeta de riemann — Histoire de la fonction zêta de Riemann Cet article présente une histoire de la fonction zêta de Riemann. Pour une présentation mathématique de la fonction et de ses propriétés, voir : Article principal : fonction zêta de Riemann. Un… … Wikipédia en Français
Fonction zêta de Riemann — La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l argument de la valeur. Le point blanc pour s = 1… … Wikipédia en Français
Fonction Zeta de Riemann — Fonction zêta de Riemann En mathématiques, la fonction ζ de Riemann est une fonction analytique complexe qui est apparue essentiellement dans la théorie des nombres premiers. La position de ses zéros complexes est liée à la répartition des… … Wikipédia en Français