Nanonetwork

Nanonetwork

A nanonetwork or nanoscale network is a set of interconnected nanomachines, i.e., devices in the order of a few hundred nanometers or a few micrometers at most, which are able to perform only very simple tasks such as computing, data storing, sensing and actuation.[1][2][3][4][5] Nanonetworks are expected to expand the capabilities of single nanomachines both in terms of complexity and range of operation by allowing them to coordinate, share and fuse information. Nanonetworks enable new applications of nanotechnology in the biomedical field, environmental research, military technology and industrial and consumer goods applications.

Contents

Communication approaches

Classical communication paradigms need to be revised for the nanoscale. The two main alternatives for communication in the nanoscale are based either on electromagnetic communication or on molecular communication.

Electromagnetic

This is defined as the transmission and reception of electromagnetic radiation from components based on novel nanomaterials.[6] Recent advancements in carbon and molecular electronics have opened the door to a new generation of electronic nanoscale components such as nanobatteries,[7] nanoscale energy harvesting systems,[8] nano-memories,[9] logical circuitry in the nanoscale and even nano-antennas.[10][11] From a communication perspective, the unique properties observed in nanomaterials will decide on the specific bandwidths for emission of electromagnetic radiation, the time lag of the emission, or the magnitude of the emitted power for a given input energy, amongst others.

For the time being, two main alternatives for electromagnetic communication in the nanoscale have been envisioned. First, it has been experimentally demonstrated that is possible to receive and demodulate an electromagnetic wave by means of a nanoradio, i.e., an electromechanically resonating carbon nanotube which is able to decode an amplitude or frequency modulated wave.[12] Second, graphene-based nano-antennas have been analyzed as potential electromagnetic radiators in the Terahertz band [13]

Molecular

Molecular communication is defined as the transmission and reception of information by means of molecules. The different molecular communication techniques can be classified according to the type of molecule propagation in walkaway-based, flow-based or diffusion-based communication.

In walkway-based molecular communication, the molecules propagate through pre-defined pathways by using carrier substances, such as molecular motors.[14] This type of molecular communication can also be achieved by using E. coli bacteria as chemotaxis.[15]

In flow-based molecular communication, the molecules propagate through diffusion in a fluidic medium whose flow and turbulence are guided and predictable. The hormonal communication through blood streams inside the human body is an example of this type of propagation. The flow-based propagation can also be realized by using carrier entities whose motion can be constrained on the average along specific paths, despite showing a random component. A good example of this case is given by pheromonal long range molecular communications.[16]

In diffusion-based molecular communication, the molecules propagate through spontaneous diffusion in a fluidic medium. In this case, the molecules can be subject solely to the laws of diffusion or can also be affected by non-predictable turbulence present in the fluidic medium. Pheromonal communication, when pheromones are released into a fluidic medium, such as air or water, is an example of diffusion-based architecture. Other examples of this kind of transport include calcium signaling among cells, as well as quorum sensing among bacteria.[17]

References

  1. ^ Ian F. Akyildiz, F. Brunetti, and C. Blazquez, "Nanonetworks: A New Communication Paradigm," Computer Networks Elsevier Journal, Vol. 52, n. 12, pp. 2260-2279, June 2008. [1]
  2. ^ Ian F. Akyildiz, and J. M. Jornet, "Electromagnetic Wireless Nanosensor Networks," Nano Communication Networks Elsevier Journal, Vol. 1, n. 1, pp. 3-19, June 2010. [2]
  3. ^ Ian F. Akyildiz, and J. M. Jornet, "The Internet of Nano-Things," IEEE Wireless Communications Magazine, Vol. 17, n. 6, pp. 58-63, December 2010.[3]
  4. ^ Ian F. Akyildiz, J. M. Jornet and M. Pierobon, "Nanonetworks: A New Frontier in Communications," Communications of the ACM, Vol. 54, n. 11, pp. 84-89, November 2011. [4]
  5. ^ Nanoscale Communication Networks, Bush, S. F., ISBN 978-1-60807-003-9, Artech House, 2010. [5]
  6. ^ C. Rutherglen and P. J. Burke "Nano-Electromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes," Small, 5(8), 884-906 (2009)
  7. ^ A. E. Curtright, P. J. Bouwman, R. C. Wartane and K. E. Swider-Lyons, "Power Sources for Nanotechnology," International Journal of Nanotechnology, Vol. 1, pp. 226-239, 2004.
  8. ^ Z. L. Wang, "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics," Advanced Functional Materials, Vol. 18, pp. 3553-3567, 2008.
  9. ^ Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.-L.; McChesney, J. L.; Petrovykh, D. Y. & Himpsel, F. J. Atomic scale memory at a silicon surface Nanotechnology, Vol. 13, pp. 499-502, 2002.
  10. ^ Peter J. Burke, Shengdong Li, Zhen Yu "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transactions on Nanotechnology Vol. 5 n. 4, pp. 314-334, 2006.
  11. ^ Peter J. Burke, Chris Rutherglen, and Zhen Yu, "Carbon Nanotube Antennas," in Proc. of SPIE Int. Soc. Opt. Eng. 6328, 632806-1, 2006 .
  12. ^ B. Atakan and O. Akan, "Carbon nanotube-based nanoscale ad hoc networks," IEEE Communications Magazine, Vol. 48 , n. 6, pp. 129-135, June 2010.
  13. ^ J. M. Jornet and Ian F. Akyildiz, "Graphene-based Nano-antennas for Electromagnetic Nanocommunications in the Terahertz Band," in Proc. of EUCAP 2010, Fourth European Conference on Antennas and Propagation, Barcelona, Spain, April 2010.
  14. ^ M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, "A Design of a Molecular Communication System for Nanomachines Using Molecular Motors," in Proc. Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops, March 2006
  15. ^ M. Gregori and Ian F. Akyildiz, "A New NanoNetwork Architecture using Flagellated Bacteria and Catalytic Nanomotors," IEEE JSAC (Journal of Selected Areas in Communications), Vol. 28, No. 4, pp. 612-619, May 2010.
  16. ^ L. Parcerisa and Ian F. Akyildiz, "Molecular Communication Options for Long Range Nanonetworks," Computer Networks Journal (Elsevier), Vol. 53, No. 16, pp. 2753-2766, November, 2009.
  17. ^ "The challenge of molecular communication", Technology Review (Physics arXiv blog), June 28, 2010. [6]

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”