- Mnev's universality theorem
-
In algebraic geometry, Mnev's universality theorem is a result which can be used to represent algebraic (or semi algebraic) varieties as realizations of oriented matroids, a notion of combinatorics.
Contents
Oriented matroids
For the purposes of Mnev's universality, an oriented matroid of a finite subset is a list of all partitions of points in S induced by hyperplanes in . In particular, the structure of oriented matroid contains full information on the incidence relations in S, inducing on S a matroid structure.
The realization space of an oriented matroid is the space of all configurations of points inducing the same oriented matroid structure on S.
Stable equivalence of semialgebraic sets
For the purposes of Mnev's Universality, the stable equivalence of semialgebraic sets is defined as follows.
Let U, V be semialgebraic sets, obtained as a disconnected union of connected semialgebraic sets
-
- ,
We say that U and V are rationally equivalent if there exist homeomorphisms defined by rational maps.
Let be semialgebraic sets,
-
- ,
with Ui mapping to Vi under the natural projection π deleting last d coordinates. We say that is a stable projection if there exist integer polynomial maps
such that
-
- and for all
The stable equivalence is an equivalence relation on semialgebraic subsets generated by stable projections and rational equivalence.
Mnev's Universality theorem
THEOREM (Mnev's universality theorem)
Let V be a semialgebraic subset in defined over integers. Then V is stably equivalent to a realization space of a certain oriented matroid.History
Mnev's universality theorem was discovered by Nikolai Mnev in his Ph. D. thesis. It has numerous applications in algebraic geometry, due to Laurent Lafforgue, Ravi Vakil and others, allowing one to construct moduli spaces with arbitrarily bad behaviour.
Notes
- Universality Theorem, a lecture of Nikolai Mnev (in Russian).
- N. E. Mnev, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties (pp. 527–543), in "Topology and geometry: Rohlin Seminar." Edited by O. Ya. Viro. Lecture Notes in Mathematics, 1346. Springer-Verlag, Berlin, 1988.
- R. Vakil "Murphy's Law in algebraic geometry: Badly-behaved deformation spaces", Invent. math. 164, 569-590 (2006).
- J. Richter-Gebert, Mnev's Universality Theorem Revisited, Seminaire Lotharingien de Combinatoire, B34h (1995), 15pp.
- J. Richter-Gebert The universality theorems for oriented matroids and polytopes, Contemporary Mathematics 223, 269-292 (1999).
Categories:- Algebraic geometry
- Real algebraic geometry
- Combinatorics
- Matroid theory
- Theorems in algebraic geometry
-
Wikimedia Foundation. 2010.