Mehler kernel

Mehler kernel

In mathematics, the Mehler kernel is the heat kernel of the Hamiltonian of the harmonic oscillator. Mehler (1866) gave an explicit formula for it called Mehler's formula. The Kibble–Slepian formula generalizes Mehler's formula to higher dimensions.

The Mehler kernel φ(xyt) is a solution to

\frac{\partial \varphi}{\partial t} =  \frac{\partial^2 \varphi}{\partial x^2}-x^2\varphi

Mehler's kernel is


\frac{\exp(-\coth(2t)(x^2+y^2)/2 - \text{cosech}(2t)xy)}{\sqrt{2\pi\sinh(2t)}}

This can also be written as an infinite series involving Hermite polynomials of x and y.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Noyau de la chaleur — Le noyau de la chaleur est une fonction de Green, ou solution élémentaire, de l équation de la chaleur. Sommaire 1 Expression et propriétés 1.1 Définitions générales 1.2 Théorie spectrale …   Wikipédia en Français

  • Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… …   Wikipedia

  • Spectral theory of ordinary differential equations — In mathematics, the spectral theory of ordinary differential equations is concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”