Matroid intersection

Matroid intersection

In combinatorial optimization, the matroid intersection problem is to find a largest common independent set in two matroids over the same ground set. If the elements of the matroid are assigned real weights, the weighted matroid intersection problem is to find a common independent set with the maximum possible weight. These problems generalize many problems in combinatorial optimization including finding maximum matchings and maximum weight matchings in bipartite graphs and finding arborescences in directed graphs.

Example

Let G = (U,V,E) be a bipartite graph. One may define a matroid MU on the ground set E, in which a set of edges is independent if no two of the edges have the same endpoint in U. Similarly one may define a matroid MV in which a set of edges is independent if no two of the edges have the same endpoint in V. Any set of edges that is independent in both MU and MV has the property that no two of its edges share an endpoint; that is, it is a matching. Thus, the largest common independent set of MU and MV is a maximum matching in G.

Extension

The matroid intersection problem becomes NP-hard when three matroids are involved, instead of only two.

References

  • Brezovec, Carl; Cornuéjols, Gérard; Glover, Fred (1986), "Two algorithms for weighted matroid intersection", Mathematical Programming 36 (1): 39–53, doi:10.1007/BF02591988 .
  • Aigner, Martin; Dowling, Thomas (1971), "Matching theory for combinatorial geometries", Transactions of the American Mathematical Society 158 (1): 231–245, doi:10.1090/S0002-9947-1971-0286689-5 .
  • Edmonds, Jack (1979), "Matroid intersection", Discrete Optimization I, Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the Discrete Optimization Symposium, Annals of Discrete Mathematics, 4, pp. 39–49, doi:10.1016/S0167-5060(08)70817-3 .
  • Frank, András (1981), "A weighted matroid intersection algorithm", Journal of Algorithms 2 (4): 328–336, doi:10.1016/0196-6774(81)90032-8 .
  • Frederickson, Greg N.; Srinivas, Mandayam A. (1989), "Algorithms and data structures for an expanded family of matroid intersection problems", SIAM Journal on Computing 18 (1): 112–138, doi:10.1137/0218008 .
  • Gabow, Harold N.; Tarjan, Robert E. (1984), "Efficient algorithms for a family of matroid intersection problems", Journal of Algorithms 5 (1): 80–131, doi:10.1016/0196-6774(84)90042-7 .
  • Lawler, Eugene L. (1975), "Matroid intersection algorithms", Mathematical Programming 9 (1): 31–56, doi:10.1007/BF01681329 .

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Matroid — In combinatorics, a branch of mathematics, a matroid (  /ˈmeɪ …   Wikipedia

  • Liste De Problèmes NP-Complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive …   Wikipédia en Français

  • Liste de problemes NP-complets — Liste de problèmes NP complets Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets,… …   Wikipédia en Français

  • Liste de problèmes NP-complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problème de décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive. La …   Wikipédia en Français

  • Liste de problèmes np-complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive …   Wikipédia en Français

  • List of NP-complete problems — Here are some of the more commonly known problems that are NP complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP complete problems). Most of the problems in this list are taken… …   Wikipedia

  • Duality (mathematics) — In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one to one fashion, often (but not always) by means of an involution operation: if the dual… …   Wikipedia

  • Pseudoforest — A 1 forest (a maximal pseudoforest), formed by three 1 trees In graph theory, a pseudoforest is an undirected graph[1] in which every connected component has at most one cycle. That is, it is a system of vertices and edges connecting pairs of ve …   Wikipedia

  • Greedoid — In combinatorics, a greedoid is a type of set system. It arises from the notion of the matroid, which was originally introduced by Whitney in 1935 to study planar graphs and was later used by Edmonds to characterize a class of optimization… …   Wikipedia

  • Tutte polynomial — This article is about the Tutte polynomial of a graph. For the Tutte polynomial of a matroid, see Matroid. The polynomial x4 + x3 + x2y is the Tutte polynomial of the Bull graph. The red line shows the intersection with the plane …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”