Relaxation (approximation)

Relaxation (approximation)

In mathematical optimization and related fields, relaxation is a modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem.

For example, a linear programming relaxation of an integer programming problem removes the integrality constraint and so allows non-integer rational solutions. A Lagrangian relaxation of a complicated problem in combinatorial optimization penalizes violations of some constraints, allowing an easier relaxed problem to be solved. Relaxation techniques complement or supplement branch and bound algorithms of combinatorial optimization; linear programming and Lagrangian relaxations are used to obtain bounds in branch-and-bound algorithms for integer programming.[1]

The modeling strategy of relaxation should not be confused with iterative methods of relaxation, such as successive over-relaxation (SOR); iterative methods of relaxation are used in solving problems in differential equations, linear least-squares, and linear programming.[2][3][4] However, iterative methods of relaxation have been used to solve Lagrangian relaxations.[5]

Contents

Definition

A relaxation of the minimization problem

z = \min \{c(x) : x \in X \subseteq \mathbf{R}^{n}\}

is another minimization problem of the form

z_R = \min \{c_R(x) : x \in X_R \subseteq \mathbf{R}^{n}\}

with these two properties

  1. X_R \supseteq X
  2. c_R(x) \leq c(x) for all x \in X.

The first property states that the original problem's feasible domain is a subset of the relaxed problem's feasible domain. The second property states that the original problem's objective-function is greater than or equal to the relaxed problem's objective-function.[1]

Properties

If x * is an optimal solution of the original problem, then x^* \in X \subseteq X_R and z = c(x^*) \geq c_R(x^*).

Further x^* \in X_R provides an upper bound on zR, which implies that z \geq c_R(x^*) \geq z^R.

If an optimal solution for the relaxed problem is feasible for the original problem, then it is optimal for the original problem.[1]

Some relaxation techniques

Notes

  1. ^ a b c Geoffrion (1971)
  2. ^ Murty, Katta G. (1983). "16 Iterative methods for linear inequalities and linear programs (especially 16.2 Relaxation methods, and 16.4 Sparsity-preserving iterative SOR algorithms for linear programming)". Linear programming. New York: John Wiley & Sons, Inc.. pp. 453–464. ISBN 0-471-09725-X. MR720547. 
  3. ^ Goffin, J.-L. (1980). "The relaxation method for solving systems of linear inequalities". Math. Oper. Res. 5 (3): 388–414. doi:10.1287/moor.5.3.388. JSTOR 3689446. MR594854. 
  4. ^ Minoux, M. (1986). Mathematical programming: Theory and algorithms (Translated by Steven Vajda from the (1983 Paris: Dunod) French ed.). Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd.. pp. xxviii+489. ISBN 0-471-90170-9. MR868279. (2008 Second ed., in French: Programmation mathématique: Théorie et algorithmes. Editions Tec & Doc, Paris, 2008. xxx+711 pp. ISBN 978-2-7430-1000-3. . MR2571910)|}}
  5. ^ Relaxation methods for finding feasible solutions to linear inequality systems arise in linear programming and in Lagrangian relaxation. Goffin (1980) and Minoux (1986)|loc=Section 4.3.7, pp. 120–123 cite Shmuel Agmon (1954), and Theodore Motzkin and Isaac Schoenberg (1954), and L. T. Gubin, Boris T. Polyak, and E. V. Raik (1969).

References

  • Minoux, M. (1986). Mathematical programming: Theory and algorithms (Translated by Steven Vajda from the (1983 Paris: Dunod) French ed.). Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd.. pp. xxviii+489. ISBN 0-471-90170-9. MR868279. (2008 Second ed., in French: Programmation mathématique: Théorie et algorithmes. Editions Tec & Doc, Paris, 2008. xxx+711 pp. ISBN 978-2-7430-1000-3. . MR2571910)|
  • Nemhauser, G. L.; Rinnooy Kan, A. H. G.; Todd, M. J., eds (1989). Optimization. Handbooks in Operations Research and Management Science. 1. Amsterdam: North-Holland Publishing Co.. pp. xiv+709. ISBN 0-444-87284-1. MR1105099. 
    • W. R. Pulleyblank, Polyhedral combinatorics (pp. 371–446);
    • George L. Nemhauser and Laurence A. Wolsey, Integer programming (pp. 447–527);
    • Claude Lemaréchal, Nondifferentiable optimization (pp. 529–572);
  • Rardin, Ronald L. (1997). Optimization in operations research. Prentice Hall. pp. 919. ISBN 0-02-398415-5. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Relaxation (NMR) — In nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) the term relaxation describes several processes by which nuclear magnetization prepared in a non equilibrium state return to the equilibrium distribution. In… …   Wikipedia

  • relaxation phenomenon — ▪ physics and chemistry Introduction       in physics and chemistry, an effect related to the delay between the application of an external stress to a system that is, to an aggregation of matter and its response. It may occur in nuclear, atomic,… …   Universalium

  • approximation de temps de relaxation — relaksacijos trukmės artinys statusas T sritis radioelektronika atitikmenys: angl. relaxation time approximation vok. Näherung der Relaxationszeit, f rus. приближение времени релаксации, n pranc. approximation de temps de relaxation, f …   Radioelektronikos terminų žodynas

  • relaxation time approximation — relaksacijos trukmės artinys statusas T sritis radioelektronika atitikmenys: angl. relaxation time approximation vok. Näherung der Relaxationszeit, f rus. приближение времени релаксации, n pranc. approximation de temps de relaxation, f …   Radioelektronikos terminų žodynas

  • approximation de temps de relaxation — relaksacijų trukmės artinys statusas T sritis fizika atitikmenys: angl. relaxation time approximation vok. Näherung der Relaxationszeit, f rus. приближение времени релаксации, n pranc. approximation de temps de relaxation, f …   Fizikos terminų žodynas

  • relaxation time approximation — relaksacijų trukmės artinys statusas T sritis fizika atitikmenys: angl. relaxation time approximation vok. Näherung der Relaxationszeit, f rus. приближение времени релаксации, n pranc. approximation de temps de relaxation, f …   Fizikos terminų žodynas

  • Approximation algorithm — In computer science and operations research, approximation algorithms are algorithms used to find approximate solutions to optimization problems. Approximation algorithms are often associated with NP hard problems; since it is unlikely that there …   Wikipedia

  • Relaxation method — In numerical mathematics, the relaxation method is a method for obtaining numerical approximations to the solutions of systems of equations, including certain types of elliptic partial differential equations, in particular Laplace s equation and… …   Wikipedia

  • Lagrangian relaxation — In the field of mathematical optimization, Lagrangian relaxation is a relaxation method which approximates a difficult problem of constrained optimization by a simpler problem. A solution to the relaxed problem is an approximate solution to the… …   Wikipedia

  • Linear programming relaxation — In mathematics, the linear programming relaxation of a 0 1 integer program is the problem that arises by replacing the constraint that each variable must be 0 or 1 by a weaker constraint, that each variable belong to the interval [0,1] .That is,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”